首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   12篇
数学   2篇
物理学   3篇
  2012年   2篇
  2008年   1篇
  2004年   1篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
[reaction: see text]. Monoiodinated anilines were prepared in good to excellent yields by the action of benzyltriethylammonium dichloroiodate on anilines in the presence of sodium bicarbonate and methanol. The iodinating reagent was prepared in an environmentally friendly fashion without the use of organic solvents.  相似文献   
3.
Mn site is substituted with closed shell ions (Al, Ga, Ti, Zr and a certain combination of Zr and Al) and also with Fe and Ru ions carrying the magnetic moment (S=5/2 and 2 respectively) at a fixed concentration of 5 at %. Substitution did not change either the crystal symmetry or the oxygen stoichiometry. All substituents were found to suppress both the metal-insulator and ferromagnetic transition temperatures (T p(ρ) and T C, respectively) to varied extents. Two main contributions identified for the suppression are the lattice disorder arising due to difference in the ionic radii between the substituent (r M) and the Mn3+ ion (r Mn 3+) and in the case of the substituents carrying a magnetic moment, the type of magnetic coupling between the substituent and that of the neighboring Mn ion.  相似文献   
4.
5.
Surfactant-wrapped chemically converted graphene sheets obtained from reduction of graphene oxide with hydrazine were functionalized by treatment with aryl diazonium salts. The nanosheets are characterized by X-ray photoelectron spectroscopy, attenuated total reflectance infrared spectroscopy, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. The resulting functionalized nanosheets disperse readily in polar aprotic solvents, allowing alternative avenues for simple incorporation into different polymer matrices.  相似文献   
6.
Graphite oxide (GO) is a lamellar substance with an ambiguous structure due to material complexity. Recently published GO-related studies employ only one out of several existing models to interpret the experimental data. Because the models are different, this leads to confusion in understanding the nature of the observed phenomena. Lessening the structural ambiguity would lead to further developments in functionalization and use of GO. Here, we show that the structure and properties of GO depend significantly on the quenching and purification procedures, rather than, as is commonly thought, on the type of graphite used or oxidation protocol. We introduce a new purification protocol that produces a product that we refer to as pristine GO (pGO) in contrast to the commonly known material that we will refer to as conventional GO (cGO). We explain the differences between pGO and cGO by transformations caused by reaction with water. We produce ultraviolet-visible spectroscopic, Fourier transform infrared spectroscopic, solid-state nuclear magnetic resonance spectroscopic, thermogravimetric, and scanning electron microscopic analytical evidence for the structure of pGO. This work provides a new explanation for the acidity of GO solutions and allows us to add critical details to existing GO models.  相似文献   
7.
Using aryldiazonium salts that are air-stable and easily synthesized, we describe here a one-step, room-temperature route to direct covalent bonds between pi-conjugated organic molecules on three material surfaces: Si, GaAs, and Pd. The Si can be in the form of single crystal Si including heavily doped p-type Si, intrinsic Si, heavily doped n-type Si, on Si(111) and Si(100), and on n-type polycrystalline Si. The formation of the aryl-metal or aryl-semiconductor bond attachments was confirmed by corroborating evidence from ellipsometry, reflectance FTIR, XPS, cyclic voltammetry, and AFM analyses of the surface-grafted monolayers. A data-encompassing explanation for the mechanism suggests a diazonium activation by reduction at the open circuit potential, with aryl radical secondary products bonding to the surface. The synthetic details are included for preparing the surface-grafted monolayers and the precursor diazonium salts. This spontaneous diazonium activation reaction offers an attractive route to highly passivating, robust monolayers and multilayers on many surfaces that allow for strong bonds between carbon and surface atoms with molecular species that are near perpendicular to the surface.  相似文献   
8.
9.
Cu–Zn–Sn shape memory alloy strips with composition range of 13.70–46.30 mass% Sn were fabricated by electrodepositing Sn on a shim brass surface and then subsequently annealed at a constant temperature of 400 °C for 120 min under flowing nitrogen. Subjecting the Sn-plated strips to differential scanning calorimetry (DSC) analysis revealed that the austenitic start (A s) temperature was essentially constant at 225 °C while the martensite start (M s) temperature was consistently within the 221.5–222 °C interval. Austenite to martensite phase transformation showed two distinct peaks on the DSC thermogram which can be attributed to the non-homogeneity of the bulk Cu–Zn–Sn ternary alloy. The latent heats of cooling and heating were found to increase with the mass% Sn plated on the shim brass. Effect of annealing temperature was also investigated wherein strips with an essentially constant composition of 26 mass% Sn were annealed at a temperature range of 350–420 °C for 120 min under flowing nitrogen. Varying the annealing temperature has no significant effect on the transformation temperatures of the ternary alloy.  相似文献   
10.
The electrical properties of self-assembled monolayers (SAMs) on metal surfaces have been explored for a series of molecules to address the relation between the behavior of a molecule and its structure. We probed interfacial electron transfer processes, particularly those involving unoccupied states, of SAMs of thiolates or arylates on Au by using shear force-based scanning probe microscopy (SPM) combined with current-voltage (i-V) and current-distance (i-d) measurements. The i-V curves of hexadecanethiol in the low bias regime were symmetric around 0 V and the current increased exponentially with V at high bias voltage. Different than hexadecanethiol, reversible peak-shaped i-V characteristics were obtained for most of the nitro-based oligo(phenylene ethynylene) SAMs studied here, indicating that part of the conduction mechanism of these junctions involved resonance tunneling. These reversible peaked i-V curves, often described as a negative differential resistance (NDR) effect of the junction, can be used to define a threshold tip bias, V(TH), for resonant conduction. We also found that for all of the SAMs studied here, the current decreased with increasing distance, d, between tip and substrate. The attenuation factor beta of hexadecanethiol was high, ranging from 1.3 to 1.4 A(-1), and was nearly independent of the tip bias. The beta-values for nitro-based molecules were low and depended strongly on the tip bias, ranging from 0.15 A(-1) for tetranitro oligo(phenylene ethynylene) thiol, VII, to 0.50 A(-1) for dinitro oligo(phenylene) thiol, VI, at a -3.0 V tip bias. Both the V(TH) and beta values of these nitro-based SAMs were also strongly dependent on the structures of the molecules, e.g. the number of electroactive substituent groups on the central benzene, the molecular wire backbone, the anchoring linkage, and the headgroup. We also observed charge storage on nitro-based molecules. For a SAM of the dintro compound, V, approximately 25% of charge collected in the negative scan is stored in the molecules and can be collected at positive voltages. A possible mechanism involving lateral electron hopping is proposed to explain this phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号