首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   2篇
物理学   18篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1987年   1篇
  1985年   1篇
  1967年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
2.
In the IR absorption spectra of low-temperature molecular liquids, we have observed anomalously large isotope shifts of frequencies of vibrational bands that are strong in the dipole absorption. The same effect has also been observed in their Raman spectra. At the same time, in the spectra of cryosolutions, the isotope shifts of the same bands coincide with a high accuracy (±(0.1–0.5) cm–1) with the shifts that are observed in the spectra of the gas phase. The difference between the spectra of examined low-temperature systems is caused by the occurrence of resonant dipole–dipole interactions between spectrally active identical molecules. The calculation of the band contour in the spectrum of liquid freon that we have performed in this work taking into account the resonant interaction between states of simultaneous transitions in isotopically substituted molecules can explain this effect.  相似文献   
3.
IR absorption spectra of monoisotopic 28SiH4 and 76GeH4 are studied in Ar and N2 matrices at 10 K. It is shown that the absorption spectra of silane and germane are similar in the regions of the stretching ν3 and bending ν4 vibrations. Four groups of bands can be separated out in the spectra of each molecule: (1) narrow bands characteristic of the matrix isolation studies, (2) broad bands, (3) diffuse absorption with a large value of the spectral moment M 2* the intensity of which increases upon annealing, and (4) bands of dimers the intensity of which increases quadratically with concentration. The spectra of 28SiH4 and 76GeH4 in nitrogen matrices contain a triplet in the stretching region and a doublet in the bending region, which is explained by the change in the molecular symmetry from T d to C 3V on passage from the gas phase to solid nitrogen.  相似文献   
4.
5.
We have studied the IR absorption spectra of diluted mixtures SiF4/M = 1/6000–1/10 000 in an N2 matrix at 11 K (for comparison, the spectra of SiF4 in Ar and Xe matrices have also been studied). It has been shown that, in solid nitrogen, the appearance of doublets is observed both in the range of the ν3 band of the SiF4 (28SiF, 29SiF4, and 30SiF4) isotopologues of the SiF4 molecule and in the range of the ν1 + ν4, ν2 + ν3, and ν1 + ν3 bands of 28SiF4, whereas, in the range of the 2ν3 band of 28SiF, a triplet appears. In order to analyze the influence of the matrix on the spectrum of free SiF4 molecules, we have used a model that makes it possible to successively calculate (i) the spectrum of SiF4 in terms of the model of local modes, (ii) the structure of a matrix composed by 864 N2 molecules + a rigid SiF4 molecule using the Monte Carlo method, and (iii) the interaction of matrix particles with local dipole moments in the approximation of dipole-induced dipole and dipole-quadrupole interactions. The model describes satisfactorily the low-frequency shift of bands in the nitrogen matrix. All obtained experimental and theoretical results are consistent with the assumption that two kinds of stable trapping centers of SiF4 molecules obeying the T d symmetry are realized in the nitrogen matrix.  相似文献   
6.
We investigate the IR spectra of solutions of R-21,-22,-116, and R-218 in liquid argon at 90K. The frequencies, half-widths, and absolute integral intensities of all of the absorption bands recorded are obtained and interpreted. Scientific-Research Institute of Physics, 1, Ul'yanovskaya Str., Petrodvorets, St. Petersburg, Russia. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 3, pp. 297–301, May–June, 1997.  相似文献   
7.
The band shape theory of the vibrational transitions accompanied by an excitation of a strongly IR-active fundamental is elaborated for low-temperature molecular liquids with an account for strong intermolecular resonance dipole–dipole interactions. The developed model of a liquid uses the regular (fcc structure) crystal whose structure is then destroyed by introducing random, normally distributed displacements of particle positions, by assigning arbitrary molecular orientations as well as a varied number of randomly distributed vacancies. This model was applied to several molecular liquids , those having triply degenerate modes were studied more in detail.  相似文献   
8.
The spectral characteristics of the SiF4 molecule in the range 3100–700 cm?1, including the absorption range of the band ν3, are studied in the gas phase at P = 0.4–7 bar and in solutions in liquefied Ar and Kr. In the cryogenic solutions, the relative intensities of the vibrational bands, including the bands of the isotopically substituted molecules, are determined. The absorption coefficients of the combination bands 2ν3, ν3 + ν1, ν3 + ν4, and 3ν4 are measured in the solution in Kr. In the gas phase of the one-component system at an elevated pressure of SiF4, the integrated absorption coefficient of the absorption band ν3 of the 28SiF4 molecule was measured to be A3) = 700 ± 30 km/mol. Within the limits of experimental error, this absorption coefficient is consistent with estimates obtained from independent measurements and virtually coincides with the coefficient A3) = 691 km/mol calculated in this study by the quantum-chemical method MP2(full) with the basis set cc-pVQZ.  相似文献   
9.
IR spectra of the solution of SF6 molecules in liquid NF3 at 84 K have been recorded. In a solvent transmission window of 1500–1750 cm−1, two wide absorption bands with pronounced peaks in the high-frequency part are observed. The profile of these bands is explained by the influence of the resonance dipole-dipole (RDD) interaction of the states of the simultaneous transition ν1(SF6) + ν3(NF3) and ν2(SF6) + ν3(NF3) with the states (ν1 + ν3) and (ν2 + ν3) of the SF6 molecules, respectively. The use of three isotopic modifications 32SF6, 33SF6, and 34SF6 has allowed us to vary the resonance detuning and thus to change the strength of the RDD interaction. With the liquid near the melting point being represented as a close-packed cubic crystal, the profile was calculated and its spectral characteristics were determined. The frequencies of the main peaks coincide with the experimental values accurate to the error.  相似文献   
10.
We have measured and interpreted the IR spectra of liquid ozone films at 78–85 K and ozone dissolved in liquid argon at 91–95 K. A less hindered rotation of ozone molecules in argon manifests itself as an intensity redistribution, caused by the Coriolis interaction, from the states ν3(B 1) and ν1 + ν3(B 1) to the states ν1(A 1) and 2ν1(A 1), respectively. The occurrence of wings in the contours of the bands ν1(A 1), 2ν1(A 1), and 2ν3(A 1) in liquid Ar and their absence in the spectrum of O3 also confirms the conclusion that the rotational motion of ozone molecules in an inert solvent at low temperatures is relatively less hindered. Maxima of ozone bands in Ar solution are shifted toward lower frequencies compared to those in the gas phase by 1–30 cm?1, which corresponds to the following shifts of harmonic frequencies of the molecule: Δω1 = ?1.85(5) cm?1, Δω2 = ?0.67(7) cm?1, Δω3=?7.20(5) cm?1. It was found that the absorption band of the ν3 mode in the spectrum of O3 in the liquid phase has a complicated asymmetric contour because of the resonance dipole-dipole interaction. The first and second spectral moments of this band have been determined to be M 1 = 1030.6 cm?1 and M 2 = 240.0 cm?2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号