首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
化学   45篇
  2023年   1篇
  2019年   1篇
  2014年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1993年   4篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1965年   1篇
排序方式: 共有45条查询结果,搜索用时 814 毫秒
1.
Some photosensitive molecules, such as p-N,N′-dimethylaminobenzoic acid (DMABA), Nile Red, heteropolytungstic acid (H3PW12O40, HPA) and metalloporphyrins, have been entrapped onto nano-scale pores or channels of TiO2-modified Y-Zeolite (TiO2-Y-Zeolite) and MCM41 (TiO2-MCM41) and their excited-state intermediates have been characterized in terms of the excited-state dynamics by using laser spectroscopic techniques. Through these studies, it has been found that the photo-induced electrons are generated from the intramolecular charge transfer (ICT) state of DMABA, Nile Red or metalloporphyrin (MnTPP(Cl)), followed by transferring to the TiO2-Y-Zeolite or TiO2-MCM41 more efficiently as compared to the bulk TiO2, NaY-Zeolite or MCM41. The efficient photoinduced interfacial electron transfer causes the rapid formation of radicals of those photosensitive molecules (a few tens ps). It has been also found that these photophysical properties can be applied to develop the new photocatalyst as observed by the efficient photocatalytic activities of the DMABA or Nile Red-entrapped TiO2-Y-Zeolites for the photoreduction of an azo-dye such as Methyl Orange in water. On the other hand, in case of HPA-entrapped TiO2-Y-zeolite, the electron generated from the excited-state TiO2 is transferred to HPA, followed by formation of the reduction product, heteropoly blue (HPB) which is also generated by UV irradiation of HPA. This electron transfer is analogous to the Z-scheme mechanism of plant photosynthetic systems showing two photon reactions. Because of this photoelectron transfer mechanism, the HPA-entrapped TiO2-Y-zeolite has demonstrated the synergistic enhancement of the photocatalytic decomposition of Methyl Orange and hydrogen generation from photolysis of water.  相似文献   
2.
It has been previously shown that a metabolite of piroxicam but not piroxicam itself causes phototoxicity to cells in vitro after exposure to UVA (320–400 nm) radiation. The phototoxicity mechanism for this metabolite, 2-methyl-4-oxo-2H-l,2-benzothiazine-l,l-dioxide (Compound I), was investigated. In vitro phototoxicity to human mononuclear cells was assayed using 0.5 m M Compound I and UVA radiation. The UVA fluence required for phototoxicity of Compound I was lower by a factor of 2-3 in D2O buffer compared to H2O buffer. Superoxide dismutase and mannitol, which remove O2- and OH", respectively, do not decrease the phototoxicity. The photodecomposition of Compound I was inhibited by sodium azide, enhanced by human serum albumin and unaffected by mannitol. Stable photoproducts of Compound I were not toxic to the cells. The quantum yield of singlet oxygen based on its emission at 1270 nm was 0.19 and 0.35 for Compound I and s2 ± 10-3 and 10-2 for piroxicam in D2O and C6H6, respectively. While the extremely low quantum yield for singlet oxygen from piroxicam appears to account for its lack of phototoxicity, the phototoxicity mechanism for its metabolite, Compound I, most likely does involve singlet oxygen.  相似文献   
3.
This review summarizes research on many of the potential applications of photosensitized crosslinking of tissue proteins in surgery and current knowledge of the photochemical mechanisms underlying formation of the covalent protein–protein crosslinks involved. Initially developed to close wounds or reattach tissues, protein photocrosslinking has also been demonstrated to stiffen and strengthen tissues, decrease inflammatory responses and facilitate tissue bioengineering. These treatments appear to result largely from crosslinks within and between collagen molecules in tissue that typically form by an oxygen‐dependent mechanism. Surgical applications discussed include sealing wounds in skin, cornea and bowel; reattaching severed nerves, blood vessels and tendons; strengthening cornea and vein; reducing capsular contracture after breast implants; and regenerating joint cartilage.  相似文献   
4.
An intramolecular charge transfer (ICT) molecule,p-N,N-dimethyl-aminobenzoic acid (DMABA) has been studied in zeolite and colloidal media. The ratio of ICT to normal emission (ICT/LE) is greatly enhanced in zeolites compared to that in polar solvents. The ICT emission of DMABA was quenched by increasing the concentration of TiO2 colloids, while the normal emission was slightly enhanced. Upon illumination of the heteropoly acid (HPA) incorporated TiO2 colloids, interfacial electron transfer takes place from the conduction band of TiO2 to the incorporated HPA which is also excited to catalyze the photoreduction of Methyl Orange. It is found that the interfacial electron transfer mechanism of HPA/TiO2 is quite analogous to the Z-scheme mechanism for plant photosynthetic systems. In DMABA-adsorbed TiO2/Y-zeolite the ICT/LE ratio of DMABA is quite small implying that electron transfer takes place from DMABA to the conduction band of TiO2. This results in drastic enhancement in the photocatalytic activity of DMABA-adsorbed TiO2/Y-zeolite compared to free TiO2/Y-zeolite.  相似文献   
5.
Photosensitized protein cross‐linking has been recently developed to seal wounds and strengthen tissue. Although the photosensitizing dye, Rose Bengal (RB), is phototoxic to cultured cells, cytotoxicity does not accompany RB‐photosensitized tissue repair in vivo. We investigated whether the environment surrounding cells in tissue or the high irradiances used for photo–cross‐linking inhibited RB phototoxicity. Fibroblasts (FB) grown within collagen gels to mimic a tissue environment and monolayer cultured FB were treated with RB (0.01–1 mm ) and the high 532 nm laser irradiances used in vivo for tissue repair (0.10–0.50 W cm?2). Monolayer FB were substantially more sensitive to RB photosensitization: the LD50 was >200‐fold lower than that in collagen gels. Collagen gel protection was associated with increased Akt phosphorylation, a prosurvival pathway. RB phototoxicity in collagen gels was 25‐fold greater at low (0.030 W cm?2) that at high (0.50 W cm?2) irradiances. Oxygen depletion at high irradiance only partially accounted for the irradiance dependence of phototoxicity as replacing air with nitrogen only increased the LD50 by four‐fold in monolayers. These results indicate that the lack of RB phototoxicity during in vivo tissue repair results from upregulation of prosurvival pathways in tissue cells, oxygen depletion and irradiance‐dependent RB photochemistry.  相似文献   
6.
7.
Abstract— An instrument designed for convenient determination of action spectra for cutaneous photo-responses in man and experimental animals is described. Light from 450 W Xe lamp is dispersed by a concave holographic grating. The spectrum from 244 to 616 nm is projected as a planar strip (2 times 17 cm) intercepted by a grid with 31 ports. The bandwidth at each port is 12 nm and the size of the port increases from about 4 × 4 mm to 6 × 8 mm from the low to high wavelength limits, respectively. Typical fluence rates in quanta m-2 s-1 are 4.0 times 1019 at 298 nm, 16 times 1019 at 394nm and 22 times 1019 at 538 nm. Responses due to delayed erythema in normal skin and to musk ambrette photoallergy and solar urticaria in patients skin have been elicited with this instrument.  相似文献   
8.
UV-INDUCED PROTEIN ALTERATIONS AND LIPID OXIDATION IN ERYTHROCYTE MEMBRANES   总被引:3,自引:0,他引:3  
Certain ultraviolet radiation-induced effects in skin may result from primary photochemical alterations in cell membranes. We have studied isolated erythrocyte membranes in order to determine the UV-fluence and wavelength dependence for protein alterations and lipid oxidation. Protein crosslinking was detected as high molecular weight protein (greater than 200,000 DA) on polyacrylamide/agarose gel electrophoresis. Spectrin decreased more rapidly than the other membrane proteins upon exposure to lambda = 250-380 nm radiation. Nitrogen-purging inhibited the UV-induced decrease in spectrin by 60% and decreased crosslinking to an even greater degree. The decrease in spectrin was not inhibited by superoxide dismutase, catalase, or sodium azide. Radiation at 280 nm was most effective for spectrin loss, 265 and 297 nm were less effective and 254 and 313 nm were not effective. Prior irradiation at 280 nm did not sensitize the membranes to subsequent irradiation at 313 nm indicating that photodecomposition products of tryptophan are not involved. Lipid photooxidation was measured with the thiobarbituric acid assay and was induced at higher fluences of UV radiations than those required for loss of spectrin. These results indicate that the major effects of UV radiation on cell membranes are alterations of proteins and suggest that tryptophan is the major chromophore for these alterations.  相似文献   
9.
Singlet oxygen (1O2) is unique amongst reactive oxygen species formed in cells in that it is an excited state molecule with an inherent upper lifetime of 4 micros in water. Whether the lifetime of 1O2 in cells is shortened by reactions with cellular molecules or reaches the inherent maximum value is still unclear. However, even with the maximum lifetime, the diffusion radius is only approximately 220 nm during three lifetimes (approximately 5% 1O2 remaining), much shorter than cellular dimensions indicating that the primary reactions of 1O2 will be subcellularly localized near the site of 1O2 formation. This fact has raised the question of whether spatially resolved cellular responses to 1O2 occur, i.e. whether responses can be initiated by generation and reaction of 1O2 at a particular subcellular location that would not have been produced by 1O2 generation at other subcellular sites. In this paper, we discuss examples of spatially resolved responses initiated by 1O2 as a function of distance from the site of generation of 1O2. Three levels are recognized, namely, a molecular level where the primary oxidation product directly modifies the behavior of a cell, an organelle level where the initial photo-oxidation products initiate mechanisms that are unique to the organelle and the cellular level where mediators diffuse from their site of formation to the target molecules that initiate the response. These examples indicate that, indeed, spatially resolved responses to 'O2 occur in cells.  相似文献   
10.
A tremendous breakthrough was required for the researchers trying to find a way to photodecomposition of water by using semiconductor photocatalysts without electricity. In this regard, we attempted to prepare the heteropolyacid (HPA)-encapsulated TiHY zeolite a new photocatalyst mimicking the plant photosynthetic system. This photocatalyst (0.3 g/40 ml) was observed to generate hydrogen (4.08±0.7 μl/h) and oxygen (6.86±0.7 μl/h) from the aqueous solutions upon illumination by two photon reactions (UV and visible lights), which is quite analogous to the “Z-scheme” mechanism for plant photosynthetic systems. The turnover number of the photocatalyst was determined to be 11 with the quantum yield of the water splitting about 27±6% at 352 nm. Thus, this inorganic material must be very useful as a reaction center mimicking the plant photosynthetic system without electrical energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号