首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   18篇
数学   6篇
物理学   3篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2002年   1篇
  1898年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
The physical properties of organic nanotubes attract increasing attention due to their potential benefit in technology, biology and medicine. We study the effect of ion size on the electrical properties of cylindrical nanotubes filled with electrolyte solution within a modified Poisson-Boltzmann (PB) approach. For comparison purposes, small hollow nanospheres filled with electrolyte solution are considered. The finite size of the particles in the inner electrolyte solution is described by the excluded volume effect within a lattice statistics approach. We found that an increased ion size reduces the number of counterions near the charged inner surface of the nanotube, leading to an enlarged electrostatic surface potential. The concentration of counterions close to the inner surface saturates for higher surface charge densities and larger ions. In the case of saturation, the closest counterion packing is achieved, all lattice sites near the surface are occupied and an actual counterion condensation is observed. By contrast, the counterion concentration at the axis of the nanotube steadily increases with increasing surface charge density. This growth is more pronounced for smaller nanotube radii and larger ions. At larger nanotube radii for small ion size counterion condensation may also be observed according to the Tsao criterion, i.e. the counterion concentration at the centre is independent of the number of counterions in the system. With decreasing radius the Tsao condensation effect is shifted towards physiologically unrealistic surface charge densities.  相似文献   
2.
3.
4.
Functional antimicrobial cotton fibres were prepared in a novel two-step procedure utilising the pad-dry-cure method to apply an inorganic–organic hybrid sol–gel precursor (reactive binder, RB) followed by the in situ synthesis of AgCl particles on the RB-treated fibres. The morphology and surface composition of the modified cotton fibres were investigated by scanning electron microscopy imaging and X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy spectral analyses. The bulk concentration of Ag on the cotton fibres was determined by inductively coupled plasma mass spectroscopy, and the antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus was estimated according to the ISO 20645:2004 (E) and AATCC 100-1999 methods. The results showed that this application process yields the following important benefits: (1) the presence of the RB silica matrix increased the fibres’ capacity for adsorbing AgCl particles compared with the same fibres without RB; (2) the in situ synthesis enabled a simple and environmentally friendly preparation of AgCl particles from AgNO3 and their embedment into the fibres; (3) the AgCl particles were bound to the RB silica matrix by physical forces, which allowed for their controlled release from the fibres; (4) the capacity of the RB-modified cotton samples to hold embedded AgCl particles was sufficient to provide a 100 % bacterial reduction even after 10 repeated washing cycles; and (5) the chemical modification of the cotton fibres did not significantly change their whiteness, wettability or softness.  相似文献   
5.
6.
Journal of Radioanalytical and Nuclear Chemistry - We suspected that changes in the neutron spectrum, caused by varying control rod positions in routine steady state operation of our TRIGA nuclear...  相似文献   
7.
8.
Like-charged surfaces are able to attract each other if they are embedded in an electrolyte solution of multivalent rodlike ions, even if the rods are long. To reproduce this ability the Poisson-Boltzmann model has recently been extended so as to account for the rodlike structure of the mobile ions. Our model properly accounts for intraionic correlations but still neglects correlations between different rodlike ions. For sufficiently long rods, the model shows excellent agreement with Monte Carlo simulations and exhibits two minima - a depletion and a bridging minimum - in the interaction free energy. In the present work, we generalize the Poisson-Boltzmann model to systems with polydisperse rod lengths and arbitrary charge distributions along the rods, including the presence of salt. On the level of the linearized Debye-Hu?ckel model we derive a general criterion for whether an electrolyte with given distribution of rodlike ions is able to mediate attraction between like-charged surfaces. We numerically analyze two special cases, namely the influence of salt on symmetric and asymmetric mixtures of monodisperse rodlike ions. The symmetric mixture is characterized by the presence of both negatively and positively charged (but otherwise identical) rodlike ions. For the asymmetric mixture, the system contains rodlike ions of only one type. We demonstrate that the addition of salt retains the depletion minimum but tends to eliminate the bridging minimum.  相似文献   
9.
In order to obtain a deeper insight into effects occurring when an electrolyte solution is added to a solution of a strong polyelectrolyte, the microcalorimetric and potentiometric titrations of poly(sodium 4-styrenesulfonate) (Na(+)PSS(-)) solution with different alkali, earth-alkali and tetraalkylammonium nitrate, perchlorate and chloride solutions were performed. From the calorimetric titrations the differences in sign and magnitude of enthalpy change upon addition of various electrolytes were observed depending on the salt used. Potentiometric titrations using a sodium ion selective electrode have revealed that addition of an electrolyte is accompanied by the increase in sodium activity until a certain critical value is reached, which seems to be the consequence of counterion substitution on the polyelectrolyte chain. In the case of addition of lithium and sodium salts the experimental results for ΔH of mixing can be qualitatively correctly explained by the Poisson-Boltzmann and Monte Carlo calculations based on the continuum solvent models. This is not the case for the mixtures with KNO(3), RbNO(3) and CsNO(3) salts. The results suggest that the ion-specific effects, associated with the changes in the water structure, have to be taken into account when thermodynamic properties of polyelectrolytes in solution are concerned. The calorimetric results imply that the enthalpically observed cation specificity for binding to a poly(styrenesulfonate) group could be correlated with corresponding cation hydration enthalpies. The counterion substitution of sodium with divalent cations was found to be endothermic, which is in qualitative agreement with the electrostatic theory.  相似文献   
10.
We study the motion of yarn modelled as a one-dimensional inelastic string. In textile production, the yarn is being withdrawn from cross-wound packages in warping and weft insertion. During unwinding, there appear forces in the yarn that are approximately proportional to the square of the unwinding velocity. The yarn tension is not constant, but it oscillates within some interval. This is especially noticeable in over-end unwinding from a static cross-wound package. Even when the yarn is not strongly stressed, so that the tension never exceeds a few percent of the breaking strength, the yarn can still break sometimes. The production process requires as large warping and weaving speeds as possible; therefore, it is necessary to improve our understanding of the cross-wound package unwinding and to find the necessary modifications of the yarn unwinding process. In addition to empirical tests, it has proved useful to study yarn unwinding by mathematical modelling and computer simulations. We state the equations of motion that describe the yarn unwinding and develop a mathematical model that permits to simulate the process of unwinding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号