首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
化学   45篇
力学   1篇
物理学   4篇
  2022年   2篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1993年   1篇
  1991年   1篇
  1981年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Band structure calculations at the level of LMTO-ASA provide insight into the electronic structure of BaV10O15 and the origin of the structural phase transition. A crystal orbital Hamiltonian population/integrated crystal orbital Hamiltonian population analysis provides evidence that the crystallographic phase transition is driven by V-V bond formation. As well, the energy bands near the Fermi level are very narrow, <1 eV, consistent with the fact that the observed insulating behavior can be due to electron localization via either Mott-Hubbard correlation and/or Anderson disorder. The partial solid solution, BaV10−xTixO15, was examined to study the effect of Ti-doping at the V sites on the structure and electronic transport properties. In spite of the non-existence of “BaTi10O15”, the limiting x=8, as indicated by a monotonic increase in the cell volume and systematic changes in properties. This limit may be due to the difficulty of stabilizing Ti2+ in this structure. For x=0.5 both the first order structural phase transition and the magnetic transition at 40 K are quenched. The samples obey the Curie-Weiss law to x=3 with nearly spin only effective moments along with θ values which range from −1090 K (x=0.5) to −1629 K (x=3). For x>3 a very large, ∼2×10−3 emu/mol, temperature independent (TIP) contribution dominates. Conductivity measurements on sintered, polycrystalline samples show semiconducting behavior for all compositions. Activation energies for Mott hopping derived from high temperature data range from ∼0.1 eV for x=0-1 and fall to a plateau of 0.06 eV for x=3-7. Low temperature data for x=3, 5 and 7 show evidence for Mott variable range hoping (VRH) with a T1/4 law and in one case between 5 and 17 K, a Efros-Shklovskii correlated hopping, T1/2 law, was seen, in sharp contrast to BaV10O15 where only the E-S law was observed up to 75 K. Seebeck coefficients are small (<35 μV/K), positive, roughly TIP and increase with increasing x up to x=5. This may point to a Heikes hopping of holes but a simple single carrier model is impossible. The compositions for x>3 are remarkable in that local moment behavior is lost, yet a metallic state is not reached. The failure of this system to be driven metallic even at such high doping levels is not fully understood but it seems clear that disorder induced carrier localization plays a major role.  相似文献   
2.
Neurotoxicity is a serious health problem of patients chronically exposed to arsenic. There is no specific treatment of this problem. Oxidative stress has been implicated in the pathological process of neurotoxicity. Polyphenolics have proven antioxidant activity, thereby offering protection against oxidative stress. In this study, we have isolated the polyphenolics from Acacia nilotica and investigated its effect against arsenic-induced neurotoxicity and oxidative stress in mice. Acacia nilotica polyphenolics prepared from column chromatography of the crude methanol extract using diaion resin contained a phenolic content of 452.185 ± 7.879 mg gallic acid equivalent/gm of sample and flavonoid content of 200.075 ± 0.755 mg catechin equivalent/gm of sample. The polyphenolics exhibited potent antioxidant activity with respect to free radical scavenging ability, total antioxidant activity and inhibition of lipid peroxidation. Administration of arsenic in mice showed a reduction of acetylcholinesterase activity in the brain which was counteracted by Acacia nilotica polyphenolics. Similarly, elevation of lipid peroxidation and depletion of glutathione in the brain of mice was effectively restored to normal level by Acacia nilotica polyphenolics. Gallic acid methyl ester, catechin and catechin-7-gallate were identified in the polyphenolics as the major active compounds. These results suggest that Acacia nilotica polyphenolics due to its strong antioxidant potential might be effective in the management of arsenic induced neurotoxicity.  相似文献   
3.
The new binary antimonide Ti(2)Sb was found to crystallize in a distorted variant of the La(2)Sb type, which contains a square planar La net with short La-La bonds. In the Ti(2)Sb structure, the corresponding Ti net is deformed to squares and rhombs in order to enhance Ti-Ti bonding, as proven by single-crystal X-ray investigation in combination with the real-space pair distribution function technique utilizing both X-ray and neutron powder diffraction data. Electronic structure calculations revealed a lowering of the total energy caused by the disorder, the major driving force being strengthened Ti-Ti interactions along the diagonal of the Ti(4) rhombs.  相似文献   
4.
The sulfide-tellurides Ba(3)Cu(17-x)(S,Te)(11) and Ba(3)Cu(17-x)(S,Te)(11.5) were synthesized from the elements in stoichiometric ratios heated to 1073 K, followed by slow cooling to 873 K over 100 h. Ba(3)Cu(17-x)(S,Te)(11) is isostructural to Ba(3)Cu(17-x)(Se,Te)(11) when [S] > [Te], space group R ?3m, with lattice dimensions of a = 12.009(1) ?, c = 27.764(2) ?, V = 3467.6(5) ?(3), for Ba(3)Cu(15.7(4))S(7.051(5))Te(3.949) (Z = 6). The structure is composed of Cu atoms forming paired hexagonal antiprisms, capped on the two outer hexagonal faces, where each Cu atom is tetrahedrally coordinated by four Q (= S, Te) atoms. The new variant is formed when [Te] > [S]; then Ba(3)Cu(17-x)(S,Te)(11.5) adopts space group Fm3?m with a = 17.2095(8) ?, V = 5096.9(4) ?(3), for Ba(3)Cu(15.6(2))S(5.33(4))Te(6.17) (Z = 8). This structure consists of eight Te-centered Cu(16) icosioctahedra per cell interconnected by cubic Cu(8) units centered by Q atoms. Electronic structure calculations and property measurements illustrate that these compounds behave as extrinsic p-type semiconductors-toward metallic behavior for the latter compound. With standard oxidation states Ba(2+), Cu(+), and Q(2-), the electron precise formulas are Ba(3)Cu(16)Q(11) and Ba(3)Cu(17)Q(11.5).  相似文献   
5.
6.
The new ternary pnictides, Ti(1-delta)Mo(1+delta)Pn4 (Pn = As, Sb), were uncovered during our search for novel thermoelectric materials. Both compounds crystallize in the OsGe2 type in the monoclinic space group C2/m, with lattice dimensions of a = 10.1222(9) A, b = 3.6080(3) A, c = 8.1884(8) A, beta = 120.230(2) degrees , and V = 258.38(7) A3 (Z = 2) for Ti(0.79(1))Mo(1.21)Sb4 and a = 9.1580(2) A, b = 3.3172(1) A, c = 7.6666(1) A, beta = 119.496(1) degrees , and V = 202.720(4) A3 (Z = 2) for Ti(0.86(2))Mo(1.14)As4. The electronic structure calculations predicted metallic behavior for these compounds, which was in agreement with the measured temperature dependence of the electrical conductivity and Seebeck coefficient.  相似文献   
7.
Cui Y  Assoud A  Xu J  Kleinke H 《Inorganic chemistry》2007,46(4):1215-1221
The title compounds were prepared from the elements between 600 and 800 degrees C in evacuated silica tubes. Both tellurides, Ba7Au2Te14 and Ba6.76Cu2.42Te14, form ternary variants of the NaBa6Cu3Te14 type, space group P63/mcm, with a = 14.2593(7) A, c = 9.2726(8) A, and V = 1632.8(2) A3 (Z = 2) for Ba7Au2Te14 and a = 14.1332(4) A, c = 9.2108(6) A, and V = 1593.3(1) A3 (Z = 2) for Ba6.76Cu2.42Te14. The Na site is filled with a Ba atom (deficient in case of the Cu telluride) and the Cu site with 66.5(3)% Au and 61.7(8)% Cu. An additional site is filled with 9.5(7)% Cu in the structure of Ba6.76Cu2.42Te14. These structures are comprised of bent Te32- units and AuTe4/CuTe4 tetrahedra, forming channels filled with Ba cations. The BaTe9 polyhedra are connecting the channels to a three-dimensional structure. According to the formulations (Ba2+)7(Au+)2(Te32-)3(Te2-)5 and (Ba2+)6.76(Cu+)2.42(Te32-)3(Te2-)5, the materials are electron-precise with 16 positive charges equalizing the 16 negative charges. Correspondingly, both tellurides are semiconductors, as experimentally confirmed, with calculated band gaps of 0.7 and 1.0 eV, respectively.  相似文献   
8.
Large enhancements have been observed in the sub-barrier fusion cross sections for Ti+Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2+ and 3 states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for 46,48Ti+61Ni systems. The present paper gives the results of these studies.  相似文献   
9.
The New Antimonides ZrNiSb and HfNiSb: Synthesis, Structure, and Properties in Comparison to ZrCoSb and HfCoSb The antimonides ZrNiSb and HfNiSb were prepared by arc-melting of stoichiometric mixtures of Zr, ZrSb2 and Ni, and Hf, HfSb2 and Ni, respectively. Unlike ZrCoSb and HfCoSb, which form the LiAlSi structure type, ZrNiSb and HfNiSb crystallize in the TiNiSi type. The lattice dimensions are a = 672.7(2) pm, b = 416.43(8) pm, c = 753.8(1) pm, V = 211.16(7) × 106 pm3 for ZrNiSb and a = 662.3(5) pm, b = 413.3(3) pm, c = 746.8(8) pm, V = 204.4(3) × 106 pm3 for HfNiSb (space group Pnma). Whereas no Zr–Zr contacts < 400 pm occur in the structure of ZrCoSb, Zr–Zr bonds are found in the structure of ZrNiSb. This difference is a consequence of the different numbers of valence electrons. The structural differences come along with a drastic change in the electronic structure and in the physical properties: ZrNiSb exhibits metallic behavior, in contrast to the not conducting ZrCoSb.  相似文献   
10.
ScCoSb: the Most Valence-Electron-Poor Ternary Transition Metal Antimonide MM'Sb with M–M Bonding The antimonide ScCo1–xSb was prepared by arc-melting the elements. ScCoSb crystallizes in the TiNiSi structure type, occurring as a drilling. The lattice parameters are a = 680.62(6) pm, b = 425.65(5) pm, c = 737.77(8) pm, V = 213.74 106 pm3 (space group Pnma, Z = 4). Besides strong Sc–Sb-, Co–Sb-, and Sc–Co bonding, Sc–Sc bonds stabilize the structure to a small extent. The results of Extended Hückel calculations point to metallic properties of ScCoSb, which are confirmed by measurements of the electrical resistivity as a function of temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号