首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   0篇
  国内免费   1篇
化学   93篇
力学   1篇
物理学   2篇
  2017年   1篇
  2012年   11篇
  2011年   11篇
  2009年   7篇
  2008年   9篇
  2007年   15篇
  2006年   11篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1994年   1篇
  1986年   1篇
  1976年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
We present a new method for homocysteine quantitation in human plasma based on in-capillary reaction of homocysteine with 2,2′-dipyridyl disulfide. Homocysteine is in this so-called thiol-exchange reaction quantitatively transformed in mixed disulfide concomitantly with formation of an equimolar amount of 2-thiopyridone that is further separated by micellar electrokinetic chromatography and determined specifically at 343 nm. The concentration of homocysteine is thus estimated indirectly from the result of 2-thiopyridone determination. The linear detection range for concentration versus peak area for the assay was from 0.03–3 mM (correlation coefficient 0.994) with a detection limit of 6 μM and a limit of quantitation 20 μM. The inter-day reproducibility of the peak area and the migration time were 1.37% and 0.05%, respectively. The method is simple, relatively rapid and can be easily automated. Moreover the common capillary electrophoresis apparatus with a UV detector can be used to distinguish between normal and pathological hyperhomocysteinemia plasma samples.  相似文献   
2.
Manidipine dihydrochloride or benidipine hydrochloride will change to hydrate form in part, when differential scanning calorimetric (DSC) measurement is carried out together with lactose monohydrate. This interaction was accelerated by compressing their mixture. It can be suggested that the interaction may cause by the disruption of crystal structure of lactose monohydrate due to compression to set free of water molecules. A new DSC peak at 170 degrees C, which was not observed in each component, appeared in DSC measurement of a mixture. This will be based on hydrate formed by the interaction, i.e., movement of water molecules. The profile of the plotting of the DSC peak area ratio before and after compression against the compression force changed by the molar ratio of lactose monohydrate in a mixture. In the case of low molar ratio of lactose monohydrate, profiles for manidipine dihydrochloride and benidipine hydrochloride differed from each other. This will be because manidipine dihydrochloride is stickier than benidipine hydrochloride. The profile for manidipine dihydrochloride became more gradual and showed lag compression force region when the amount of addition of the lubricant, magnesium stearate in a mixture increased. The endothermic peak area at 170 degrees C for manidipine dihydrochloride was larger than that for benidipine hydrochloride. It should be suggested that benidipine hydrochloride is easier to be transformed to its hydrate than manidipine dihydrochloride.  相似文献   
3.
A bead-bed immunoassay system suitable for simultaneous assay of multiple samples was constructed on a microchip. The chip had branching multichannels and four reaction and detection regions; the constructed system could process four samples at a time with only one pump unit. Interferon gamma was assayed by a 3-step sandwich immunoassay with the system coupled to a thermal lens microscope as a detector. The biases of the signal intensities obtained from each channel were within 10%, and coefficients of variation were almost the same level as the single straight channel assay. The assay time for four samples was 50 min instead of 35 min for one sample in the single-channel assay; hence higher throughput was realized with the branching structure chip.  相似文献   
4.
5.
6.
7.
A precise understanding of individual cellular processes is essential to meet the expectations of most advanced cell biology. Therefore single-cell analysis is considered to be one of possible approach to overcome any misleading of cell characteristics by averaging large groups of cells in bulk conditions. In the present work, we modified a newly designed microchip for single-cell analysis and regulated the cell-adhesive area inside a cell-chamber of the microfluidic system. By using surface-modification techniques involving a silanization compound, a photo-labile linker and the 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer were covalently bonded on the surface of a microchannel. The MPC polymer was utilized as a non-biofouling compound for inhibiting non-specific binding of the biological samples inside the microchannel, and was selectively removed by a photochemical reaction that controlled the cell attachment. To achieve the desired single-macrophage patterning and culture in the cell-chamber of the microchannel, the cell density and flow rate of the culture medium were optimized. We found that a cell density of 2.0 × 10(6) cells/ml was the appropriate condition to introduce a single cell in each cell chamber. Furthermore, the macrophage was cultured in a small size of the cell chamber in a safe way for 5 h at a flow rate of 0.2 μl/min under the medium condition. This strategy can be a powerful tool for broadening new possibilities in studies of individual cellular processes in a dynamic microfluidic device.  相似文献   
8.
Mawatari K  Tsukahara T  Kitamori T 《The Analyst》2011,136(15):3051-3059
Integration of chemical processes on a microchemical chip has gained much attention in the past decade, and the basic concepts of micro-integration and the supporting technologies have been intensively developed. As a result, many analytical and chemical synthesis applications were demonstrated. The superior performances were verified including shortening analysis time, decrease of sample and reagent volume, and easy chemical operations. Now, the micro-technologies are moving toward practical applications by establishing the systems in which the microchemical chip works as chemical central processing unit. Recently, as a new research field, integration is further proceeding to the 10(1)-10(3) nm scale, which we call extended nanospace. The extended nanospace locates the gap between the targets of conventional nanotechnology (10(0)-10(1) nm) and micro-technology (>1 μm), and the fluidics and chemistry have not been explored well due to a lack of fundamental technologies. For these purposes, many methodologies were established in recent years. Unique liquid properties were reported, which were quite different from those in microspace. Some properties can be expected by considering the characteristics of microspace and the downscaling, and the others are unexpected or are difficult to predict. These properties enabled new chemical operations which will be quite important as the next analytical technologies. Now, chemistry and fluidics in the extended nanospace are forming a new research field. In this review, we survey the fundamental technologies for extended nanospace researches and introduce several unique liquid properties. Finally, unique chemical operations are also illustrated leading to new analytical operations.  相似文献   
9.
Rapid screening swine foot-and-mouth disease virus using micro-ELISA system   总被引:1,自引:0,他引:1  
Dong Y  Xu Y  Liu Z  Fu Y  Ohashi T  Tanaka Y  Mawatari K  Kitamori T 《Lab on a chip》2011,11(13):2153-2155
In order to tackle both regional and global foot-and-mouth disease virus (FMDV) epdimics, we hereby develop a rapid microfluidic thermal lens microscopic method to screen swine type O FMDV with good efficiency. The scheme has great merits in terms of field portability, sample volume, assay time, analytical sensitivity, and test reproducibility.  相似文献   
10.
Grazing-exit x-ray fluorescence (GE-XRF) and micro x-ray fluorescence (micro-XRF) methods were applied to chemical microchips as a detection method. Since an energy-dispersive x-ray detector was used, the simultaneous detection of multiple elements was possible. An analyzing region was especially designed on the microchip so that a sample solution could be dried and concentrated in a suitable area corresponding to the size of the primary x-ray beam. Finally, it was confirmed that both analytical methods could be combined well for use with a microchip. In GE-XRF, the background intensity in the XRF spectrum was reduced at grazing-exit angles. In addition, a good relationship between the x-ray fluorescence intensities and the concentrations of standard solutions that were introduced into the microchip was obtained. This indicates that the GE-XRF method is feasible for trace elemental analysis in chemical microchip systems. In micro-XRF, an attempt was made to concentrate and dry the analyte within a small analyzing region. The preliminary results indicated that the micro-XRF method could be applied for the analysis of microchips.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号