首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   5篇
化学   31篇
力学   2篇
数学   4篇
物理学   24篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   1篇
  2011年   2篇
  2009年   6篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1984年   2篇
  1982年   3篇
  1976年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1933年   4篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
A study has been made of the structure of the capsids of T4D giant phage produced from mutants in gene 23 and temperature-sensitive mutants in gene 24, and T4D and T2L giant phage formed by the addition of L-canavanine followed by an Larginine chase in the growth medium. All the giant phage capsids have been shown to be built according to the same geometrical architecture. This consists of a near-hexagonal surface net, lattice constant 129.5 A, folded into a left-handed T = 13 prolate icosahedron elongated along one of its fivefold symmetry axes. Their only apparent difference from wild-type T-even phage capsids is their abnormally elongated tubular part. A comparison of the capsomere morphologies and protein compositions of the giant phage capsids showed that all T4D giants are identical but differ from T2L: The T4D capsomere has a complex (6 + 6 + 1)-type morphology, whereas the T2L has a simple 6-type. T2L phage, however, lack two capsid proteins, "soc" and "hoc", present in T4D. The difference in capsomere morphology can therefore be related to the difference in the protein compositions of these two phage. Possible differences between the initiation and means of length regulation of giant phage heads and the aberrant polyheads are discussed.  相似文献   
2.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
3.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
4.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   
5.
6.
7.
8.
9.
Coating flows are laminar free surface flows, preferably steady and two-dimensional, by which a liquid film is deposited on a substrate. Their theory rests on mass and momentum accounting for which Galerkin's weighted residual method, finite element basis functions, isoparametric mappings, and a new free surface parametrization prove particularly well-suited, especially in coping with the highly deformed free boundaries, irregular flow domains, and the singular nature of static and dynamic contact lines where fluid interfaces intersect solid surfaces. Typically, short forming zones of rapidly rearranging two-dimensional flow merge with simpler asymptotic regimes of developing or developed flow upstream and downstream. The two-dimensional computational domain can be shrunk in size by imposing boundary conditions from asymptotic analysis of those regimes or by matching to one-dimensional finite element solutions of asymptotic equations. The theory is laid out with special attention to conditions at free surfaces, contact lines, and open inflow and outflow boundaries. Efficient computation of predictions is described with emphasis on a grand Newton iteration that converges rapidly and brings other benefits. Sample results for curtain coating and roll coating flows of Newtonian liquids illustrate the power and effectiveness of the theory.  相似文献   
10.
The focus of this study was the release from informational masking that could be obtained in a speech task by viewing a video of the target talker. A closed-set speech recognition paradigm was used to measure informational masking in 23 children (ages 6-16 years) and 10 adults. An audio-only condition required attention to a monaural target speech message that was presented to the same ear with a time-synchronized distracter message. In an audiovisual condition, a synchronized video of the target talker was also presented to assess the release from informational masking that could be achieved by speechreading. Children required higher target/distracter ratios than adults to reach comparable performance levels in the audio-only condition, reflecting a greater extent of informational masking in these listeners. There was a monotonic age effect, such that even the children in the oldest age group (12-16.9 years) demonstrated performance somewhat poorer than adults. Older children and adults improved significantly in the audiovisual condition, producing a release from informational masking of 15 dB or more in some adult listeners. Audiovisual presentation produced no informational masking release for the youngest children. Across all ages, the benefit of a synchronized video was strongly associated with speechreading ability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号