首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   20篇
物理学   2篇
  2016年   1篇
  2015年   1篇
  2012年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
2.
Xanthan gum and scleroglucan are assessed as environmentally friendly enhanced oil recovery (EOR) agents. Viscometric and interfacial tension measurements show that the polysaccharides exhibit favorable viscosifying performance, robust shear tolerance, electrolyte tolerance, and moderate interactions with surfactants. Non-ionic surfactants and anionic surfactants bind to xanthan gum and transform the backbone conformation from a strong helix to a more flexible structure, reducing the viscosifying efficacy of xanthan. In contrast, non-ionic surfactants and anionic surfactants bind to scleroglucan and increase the viscosifying efficacy by non-electrostatic interactions or imparted electrostatic effects. The two polysaccharides are technically viable as viscosifying agents in typical EOR injection fluid formulations.  相似文献   
3.
4.
Several prototypes of aromatic (Ar) and non-aromatic (NoAr) cation-exchange ligands suitable for capture of proteins from high conductivity (ca. 30 mS/cm) mobile phases were coupled to Sepharose 6 Fast Flow. These new prototypes of multi-modal cation-exchangers were found by screening a diverse library of multi-modal ligands and selecting cation-exchangers resulting in elution of test proteins at high ionic-strength. Candidates were then tested with respect to breakthrough capacity of bovine serum albumin (BSA), human IgG and lysozyme in buffers adjusted to a high conductivity. By applying a salt-step or a pH-step the recoveries were also tested. We have found that aromatic multi-modal cation-exchanger ligands based on carboxylic acids seem to be optimal for the capture of proteins at high-salt conditions. Experimental evidence on the importance of the relative position of the aromatic group in order to improve the breakthrough capacity at high-salt conditions has been found. It was also found that an amide group on the alpha-carbon was essential for capture of proteins at high-salt conditions. Compared to a strong cation-exchanger such as SP Sepharose Fast Flow the best new multi-modal weak cation-exchangers have breakthrough capacities of BSA, human IgG and lysozyme that are 10-30 times higher at high-salt conditions. The new multi-modal cation-exchangers can also be used at normal cation-exchange conditions and with either a salt-step or a pH-step (to pH-values where the proteins are negatively charged) to accomplish elution of proteins. In addition, the functional performance of the new cation-exchangers was found to be intact after treatment in 1.0 M sodium hydroxide solution for 10 days. For BSA it was also possible to design cation-exchangers based on non-aromatic carboxyl acid ligands with high capacities at high-salt conditions. A common feature of these ligands is that they contain hydrogen acceptor groups close to the carboxylic group. Furthermore, it was also possible to obtain high breakthrough capacities for lysozyme and BSA of a strong cation-exchanger (SP Sepharose Fast Flow) if phenyl groups were attached to the beads. Varying the ligand ratio (SP/Phenyl) could be used for optimizing the function of mixed-ligand ion-exchange media.  相似文献   
5.
The range of materials susceptible to electrochemically assisted grafting onto carbon materials has been expanded to include a new group of compounds. This new approach is based on the reduction of symmetrical or unsymmetrical triarylsulfonium salts and alkyldiphenylsulfonium salts. Our findings suggest that it is possible to form layers of aryl moieties on the surface and that the unsymmetrical triarylsulfonium salts cleave upon reduction in a direction dictated by the substituent on the rings (i.e., (4-methoxyphenyl)diphenylsulfonium salt leads to a film made predominantly of phenyl groups, whereas (4-chlorophenyl)diphenylsulfonium salt leads to a mixture of phenyl and chlorophenyl groups). These relationships may be understood by considering the inductive nature of the substituent with regard to the aryl-S bonds and are supported by preparative experiments. Upon reduction, the alkyldiphenylsulfonium salts are found to cleave almost exclusively to an alkyl radical and diphenyl sulfide. As judged from the electrochemical blocking properties of the films made from such species, either relatively thick or compact films are formed. The mass spectrometric analysis indicates that the films are made of a combination of alkyl and aryl groups and possibly related structural derivatives. Importantly, our findings provide evidence that it is possible to graft electrode surfaces with reactive aryl radicals even using precursors reduced at potentials that are substantially more negative than the estimated reduction potential of the grafting radical.  相似文献   
6.
The applicability and versatility of the recently communicated procedure for the grafting of conducting carbon substrates by diaryliodonium salts is expanded. We have found that several types of organic arylic layers can be formed on the carbon surface and that the chemical functionalities of the thus formed layers can be varied extensively over electron withdrawing (for example, -NO2) to electron donating (for example, -OMe) groups. A comparative study involving the grafting of aryldiazonium salts reveals that, despite the two approaches being similar, iodonium salts exhibit spontaneous grafting to a significantly lower extent. Nevertheless, the grafted layer becomes less accessible to proton transport as visualized from a greater reluctance toward the reduction of surface-confined nitro groups to amino groups in acidic medium. Employment of unsymmetrical iodonium salts opens up the interesting possibility of forming organic films consisting of a mixture of two different aryl groups. Alternatively, such composite layers may be prepared by selecting iodonium and diazonium salts with comparable reduction properties. Analysis of the surfaces is carried out by means of cyclic voltammetry, X-ray photoelectron spectroscopy, and ToF-SIMS (time-of-flight secondary-ion mass spectrometry). The ToF-SIMS analysis primarily serves to provide unambiguous evidence for the covalent attachment of the organic layers to the surface.  相似文献   
7.
Cetyltrimethylammonium surfactants with a range of oligo carboxylate anions bearing 2, 3, or 4 negative charges have been synthesized, and their respective behaviors in binary mixtures with water and in ternary mixtures with added decanol have been investigated. In binary mixtures with water, all surfactants formed nearly spherical micelles at high water contents; however, the interactions between micelles varied strongly with the number of charges in the counterion. Micelles with divalent counterions were generally miscible with water, whereas micelles with tri- or tetravalent counterions demixed in one concentrated and one dilute phase. Addition of decanol resulted in all cases in the appearance of a lamellar phase, and all investigated oligo carboxylate anions (di-, tri-, and tetravalent) gave rise to a strong attraction between the lamellar planes, resulting in a limited swelling (up to 35-40 wt % water) of the lamellar phase in contact with excess water. These experiments confirm the theoretically predicted influence of aggregate geometry (spheres or planes) on the attraction between colloidal aggregates neutralized by multivalent counterions. Further addition of decanol resulted in the appearance of a second birefringent phase in equilibrium with the lamellar phase. SWAXS showed this phase to be lamellar and to display short-range order that disappeared upon heating. This phase is identified as a lamellar gel phase (Lbeta-phase).  相似文献   
8.
The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells.  相似文献   
9.
The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material and the two electrodes indium-tin-oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H(2)(18)O and (18)O(2) enabled detailed information on where and to what extent uptake took place. A comparison was made between the use of a humid (oxygen-free) atmosphere and a dry oxygen atmosphere during testing of devices that were kept in the dark and devices that were subjected to illumination under simulated sunlight. It was found that the reactions taking place at the interface between the active layer and the PEDOT:PSS were the major cause of device failure in the case of these inverted devices, which are compatible with full roll-to-roll (R2R) coating and industrial manufacture. The PEDOT:PSS was found to phase separate, with the PEDOT-rich phase being responsible for most of the interface degradation in oxygen atmospheres. In water atmospheres, little chemically induced degradation was observed, whereas a large partially reversible dependence of the open circuit voltage on the relative humidity was observed. In addition, temporal aspects are discussed in regard to degradation mechanisms. Finally, analytical aspects in regard to storing devices are discussed.  相似文献   
10.
This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RIS?-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N(2)) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO(3)), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号