首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
化学   33篇
数学   2篇
物理学   26篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
排序方式: 共有61条查询结果,搜索用时 46 毫秒
1.
Summary Iron(III) complexes of a quadridentate N2S2 donor ligand, 1,2-di(o-aminophenylthio)ethane (DAPTE) and its Schiff Base with salicylaldehyde, a hexadentate N2S2O2 donor ligand,viz. 1,2-di(o-salicylaldiminophenylthio)ethane (H2DSALPTE) have been synthesised and characterised.The Schiff base ligand (1 mol) gave a dark green tri-iron(III) [Fe3(DSALPTE)(HDSALPTE)Cl3]Cl2 complex when reacted with anhydrous iron(III) chloride (1 mol). The Mössbauer data of this complex suggest the presence of three iron sites, one of which is octahedral and the other two tetrahedral. On the other hand, Fe(ClO4)3 reacted smoothly with H2DSALPTE in ethanol to give a mononuclear pseudo-octahedral complex in which the ligand functions in a dibasic hexadentate fashion. Mössbauer data suggest the presence of a low-spin-high-spin equilibrium in the solid state. The manganese(III) and cobalt(III) complexes of the Schiff base, H2DSALPTE, are also studied for the sake of comparison with the corresponding iron(III) complex. The N2S2 ligand, however, formed a low-spin pseudo-octahedral iron(III) complex. The complexes have been characterised by elemental analysis, molar conductance values, cryomagnetic data and i.r., electronic and Mössbauer spectral data.  相似文献   
2.
Commonly used measures of plant output have been criticized for their inability to provide information required to manage the dynamic operations of high-technology manufacturing plants. In this paper, we propose tests to evaluate the information content of a measure of plant output that is specifically directed at these issues. These tests are based on recent developments in DATA Envelopment Analysis (DEA), namely the Cone Ratio Envelopments. In this new application of DEA models, we shift the focus from Decision Making Units (DMUs) being evaluated to the DMUs that are being used to effect evaluations. The proposed tests are applied to evaluate the information contnet of a complexity adjusted measure of plant output, which we refer to as Total Net Die Equivalent (TNDE). Developed recently in the context of a high-technology manufacturing plant—a wafer fabrication plant of a merchant semiconductor manufacturing company-TNDE reflects the ongoing changes in product and process technologies, process flow characteristics, and volume of production. Evaluating the information content on joint criteria of recency and efficiency, the results of our tests, conducted over a 28-month period in the wafer fabrication plant,show that TNDE as a single aggregate (scalar) measure of plant output outperforms the two outputs from which it is synthesized. Thus, TNDE as a single measure of output can be used to provide an improved basis for planning a plant's future operations. En route to the development and application of the proposed tests, we illustrate how DEA concepts and models provide a rigorous and systematic basis for conducting ex post technology evaluation to guide continuous improvements in a plant's current operations.  相似文献   
3.
Significant progress has been made in the last few years toward synthesizing highly dispersible inorganic catalysts for application in the electrodes of direct methanol fuel cells. In addition, research toward achieving an efficient catalyst supporting matrix has also attracted much attention in recent years. Carbon black- (Vulcan XC-72) supported Platinum and Platinum-Ruthenium catalysts have for long served as the conventional choice as the cathode and the anode catalyst materials, respectively. Oxygen reduction reaction at the cathode and methanol oxidation reaction at the anode occur simultaneously during the operation of a direct methanol fuel cell. However, inefficiencies in these reactions result in a generation of mixed potential. This, in turn, gives rise to reduced cell voltage, increased oxygen stoichiometric ratio, and generation of additional water that is responsible for water flooding in the cathode chamber. In addition, the lack of long-term stability of Pt-Ru anode catalyst, coupled with the tendency of Ru to cross through the polymer electrolyte membrane and eventually get deposited on the cathode, is also a serious drawback. Another source of potential concern is the fact that the natural resource of Pt and the rare earth metal Ru is very limited, and has been predicted to become exhausted very soon. To overcome these problems, new catalyst systems with high methanol tolerance and higher catalytic activity than Pt need to be developed. In addition, the catalyst-supporting matrix is also witnessing a change from traditionally used carbon powder to transition metal carbides and other high-performance materials. This article surveys the recent literature based on the advancements made in the field of highly dispersible inorganic catalysts for application in direct methanol fuel cells, as well as the progress made in the area of catalyst-supporting matrices.  相似文献   
4.
Precise assessment of temperature is crucial in many physical, technological, and biological applications where optical thermometry has attracted considerable attention primarily due to fast response, contactless measurement route, and electromagnetic passivity. Rare-earth-doped thermographic phosphors that rely on ratiometric sensing are very efficient near and above room temperature. However, being dependent on the thermally-assisted migration of carriers to higher excited states, they are largely limited by the quenching of the activation mechanism at low temperatures. In this paper, we demonstrate a strategy to pass through this bottleneck by designing a linear colorimetric thermometer by which we could estimate down to 4 K. The change in perceptual color fidelity metric provides an accurate measure for the sensitivity of the thermometer that attains a maximum value of 0.86 K−1. Thermally coupled states in Er3+ are also used as a ratiometric sensor from room temperature to ∼140 K. The results obtained in this work clearly show that Yb3+−Er3+ co-doped NaGdF4 microcrystals are a promising system that enables reliable bimodal thermometry in a very wide temperature range from ultralow (4 K) to ambient (290 K) conditions.  相似文献   
5.
Microorganisms isolated from a soil sample collected from a gasoline filling station (located in Guwahati) were tested for their pyrene- and anthracene-degrading potential. Preliminary studies showed the ability of the organism to grow on carbon-free mineral medium (CFMM) supplemented with pyrene as the sole source of carbon. The organisms were found to produce a bioemulsifier when grown on CFMM with glucose or glycerol and/or pyrene as the carbon source. The organisms could also utilize anthracene when grown on mineral salt medium along with 2% glycerol. Within 2 d, anthracene concentration dropped less than 30% of the original concentration. Approximately 100 mg of the emulsifier was isolated from 25 mL of the 5-d-grown culture. The emulsifier was tested to produce emulsion with both an aliphatic and an aromatic group of hydrocarbons and resulting emulsions were found to be stable for a long period of time when keptat 10–15°C. The emulsifier was also quite stable in a pH range of 3.0–11.0. In a concentration range of 0.5–10 mg/mL, it resulted in a linear increment of apparent pyrene and anthracene solubility in water.  相似文献   
6.
The surface plasmon dispersion relation for a two component degenerate plasma system is obtained in spherical geometry, using the hydrodynamical model. The general solution for arbitrary value of angular quantum number l has been shown to have two branches, one of higher frequency and another of lower frequency. The formalism is explicitly applied to the case of electron-hole droplets (EHD) in silicon and germanium, and the normal mode frequencies have been computed for l = O, 1 and 2 values  相似文献   
7.
At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg antiferromagnet on a simple cubic lattice with competing first and second neighbor exchanges (J 1 and J 2) is investigated using the non-linear spin wave theory. We find existence of two phases: a two sublattice Néel phase for small J 2 (AF), and a collinear antiferromagnetic phase at large J 2 (CAF). We obtain the sublattice magnetizations and ground state energies for the two phases and find that there exists a first order phase transition from the AF-phase to the CAF-phase at the critical transition point, p c =0.56 or J 2/J 1=0.28. We also show that the quartic 1/S corrections due spin-wave interactions enhance the sublattice magnetization in both the phases which causes the intermediate paramagnetic phase predicted from linear spin wave theory to disappear.  相似文献   
8.
Dengue fever is one of the most common viral infections affecting humans. It is an expanding public health problem, particularly in tropical and subtropical regions. No effective vaccine or antiviral therapies against Dengue virus (DENV) infection are available. Therefore, there is a strong need to develop safe and effective therapeutic strategies that can reduce the burden and duration of hospitalizations due to this life-threatening disease. Oligonucleotide-based strategies are considered as an attractive means of inhibiting viral replication since oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The resultant targeted destruction of viral RNA interferes with viral replication without inducing any adverse effects on cellular processes. In this review, we elaborate the ribozymes, RNA interference, CRISPR, aptamer and morpholino strategies for the inhibition of DENV replication and discuss the challenges involved in utilizing such approaches.  相似文献   
9.
We show how to apply a general theoretical approach to nonequilibrium statistical mechanics, called Maximum Caliber, originally suggested by E. T. Jaynes [Annu. Rev. Phys. Chem. 31, 579 (1980)], to a problem of two-state dynamics. Maximum Caliber is a variational principle for dynamics in the same spirit that Maximum Entropy is a variational principle for equilibrium statistical mechanics. The central idea is to compute a dynamical partition function, a sum of weights over all microscopic paths, rather than over microstates. We illustrate the method on the simple problem of two-state dynamics, A<-->B, first for a single particle, then for M particles. Maximum Caliber gives a unified framework for deriving all the relevant dynamical properties, including the microtrajectories and all the moments of the time-dependent probability density. While it can readily be used to derive the traditional master equation and the Langevin results, it goes beyond them in also giving trajectory information. For example, we derive the Langevin noise distribution rather than assuming it. As a general approach to solving nonequilibrium statistical mechanics dynamical problems, Maximum Caliber has some advantages: (1) It is partition-function-based, so we can draw insights from similarities to equilibrium statistical mechanics. (2) It is trajectory-based, so it gives more dynamical information than population-based approaches like master equations; this is particularly important for few-particle and single-molecule systems. (3) It gives an unambiguous way to relate flows to forces, which has traditionally posed challenges. (4) Like Maximum Entropy, it may be useful for data analysis, specifically for time-dependent phenomena.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号