首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   6篇
物理学   6篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2000年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1962年   1篇
排序方式: 共有12条查询结果,搜索用时 46 毫秒
1.
2.
The performance of the atmospheric pressure photoionization (APPI) technique was evaluated against five sets of standards and drug-like compounds and compared to atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The APPI technique was first used to analyze a set of 86 drug standards with diverse structures and polarities with a 100% detection rate. More detailed studies were then performed for another three sets of both drug standards and proprietary drug candidates. All 60 test compounds in these three sets were detected by APPI with an overall higher ionization efficiency than either APCI or ESI. Most of the non-polar compounds in these three sets were not ionized by APCI or ESI. Analysis of a final set of 201 Wyeth proprietary drug candidates by APPI, APCI and ESI provided an additional comparison of the ionization techniques. The detection rates in positive ion mode were 94% for APPI, 84% for APCI, and 84% for ESI. Combining positive and negative ion mode detection, APPI detected 98% of the compounds, while APCI and ESI detected 91%, respectively. This analysis shows that APPI is a valuable tool for day-to-day usage in a pharmaceutical company setting because it is able to successfully ionize more compounds, with greater structural diversity, than the other two ionization techniques. Consequently, APPI could be considered a more universal ionization method, and therefore has great potential in high-throughput drug discovery especially for open access liquid chromatography/mass spectrometry (LC/MS) applications.  相似文献   
3.
4.
5.
6.
The preferential sorption of model compounds to calcium-exchanged montmorillonite surfaces was investigated using 1H high-resolution magic-angle spinning (HR-MAS) and liquid-state NMR. Synthetic mixtures, representing the major structural categories abundant in natural organic matter (NOM), and two soil extracts were sorbed to montmorillonite. The NMR spectra indicate that, of the organic components observable by 1H HR-MAS NMR, aliphatic components preferentially sorb to the clay surface, while carbohydrates and amino acids mainly remain in the supernatant. These results may help explain the highly aliphatic nature of organic matter associated with clay fractions in natural soils and sediments. Investigations using the synthetic mixtures demonstrate a specific interaction between the clay surface and the polar region in 1-palmitoyl-3-stearoyl-rac-glycerol. Similar observations were obtained with natural soil extracts. The results presented have important implications for understanding the role of organoclay complexes in natural processes, and provides preliminary evidence that HR-MAS NMR is a powerful analytical technique for the investigation of organoclay complex structure and conformation.  相似文献   
7.
8.
The ribosome has an active site comprised of RNA that catalyzes peptide bond formation. To understand how RNA promotes this reaction requires a detailed understanding of the chemical transition state. Here, we report the Br?nsted coefficient of the alpha-amino nucleophile with a series of puromycin derivatives. Both 50S subunit- and 70S ribosome-catalyzed reactions displayed linear free-energy relationships with slopes close to zero under conditions where chemistry is rate limiting. These results indicate that, at the transition state, the nucleophile is neutral in the ribosome-catalyzed reaction, in contrast to the substantial positive charge reported for typical uncatalyzed aminolysis reactions. This suggests that the ribosomal transition state involves deprotonation to a degree commensurate with nitrogen-carbon bond formation. Such a transition state is significantly different from that of uncatalyzed aminolysis reactions in solution.  相似文献   
9.
This paper describes procedures for the generation of 2D NMR databases containing spectra predicted from chemical structures. These databases allow flexible searching via chemical structure, substructure or similarity of structure as well as spectral features. In this paper we use the biopolymer lignin as an example. Lignin is an important and relatively recalcitrant structural biopolymer present in the majority of plant biomass. We demonstrate how an accurate 2D NMR database of approximately 600 2D spectra of lignin fragments can be easily constructed, in approximately 2 days, and then subsequently show how some of these fragments can be identified in soil extracts through the use of various search tools and pattern recognition techniques. We demonstrate that once identified in one sample, similar residues are easily determined in other soil extracts. In theory, such an approach can be used for the analysis of any organic mixtures.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号