首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   5篇
物理学   8篇
  2022年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2002年   1篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
We demonstrate the accurate nanoscale mapping of near-surface loss and storage moduli on a polystyrene-polypropylene blend with contact resonance force microscopy (CR-FM). These viscoelastic properties are extracted from spatially resolved maps of the contact resonance frequency and quality factor of the AFM cantilever. We consider two methods of data acquisition: (i) discrete stepping between mapping points and (ii) continuous scanning. For point mapping and low-speed scanning, the values of the relative loss and storage modulus are in good agreement with the time-temperature superposition of low-frequency dynamic mechanical analysis measurements to the high frequencies probed by CR-FM.  相似文献   
2.
Cellulose - Low-total-force contact resonance force microscopy (LTF-CRFM), an atomic force microscopy method, is introduced as a non-destructive means to quantify the local viscoelastic loss...  相似文献   
3.
4.
Poly(tert butyl acrylate) (PTBA) is found to exhibit enhanced mobility when spun cast into thin films or impregnated into cylindrical anodic aluminum oxide (AAO) nanoscale pores. In a thin film configuration, the glass transition temperature of 20 nm thick PTBA is found to decrease almost 20 °C compared to the bulk. Consistent with this mobility increase, an increased volume fraction of interphase polymer leads to at least a 2.4 times viscosity reduction when PTBA is impregnated in 100 nm pores versus 200 nm pores. Such increases in mobility result in a 15‐fold increase in CO2 permeability for an AAO confined geometry compared to a bulk film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 434–441, 2010  相似文献   
5.
6.
7.
The first synthesis and characterization of metal coordinated complexes containing in situ prepared chiral trinitrogen 1,3-bis(4,5-dihydrooxazol-2-ylimino)isoindoline-based pincer ligands are reported. Two zinc complexes, isolated as Zn(L)(2), where L = 1,3-bis(4,5-dihydro-4-(R)-phenyloxazol-2-ylimino)isoindoline ((R,R)-5) or 1,3-bis(4,5-dihydro-4-(S)-iso-propyloxazol-2-ylimino)isoindoline ((S,S)-6), respectively, are reported. Complexes Zn((R,R)-5)(2) and Zn((S,S)-6)(2) were prepared in situ through the condensation of phthalonitrile with enantiopure 2-amino-4-(R)-phenyloxazoline ((R)-3) or 2-amino-4-(S)-iso-propyloxazoline ((S)-4) in the presence of ZnCl(2) at 80 °C in dry toluene over 3-4 days. The characterizations of Zn((R,R)-5)(2) and Zn((S,S)-6)(2) in both the solid (X-ray crystallography) and solution (multinuclear NMR spectroscopy) states are reported.  相似文献   
8.
The structural and electronic transport properties of La1−x Ce x MnO3 (x=0.0–1.0) have been studied. All the samples exhibit orthorhombic crystal symmetry and the unit cell volume decreases with Ce doping. They also make a metal-insulator transition (MIT) and transition temperature increases with increase in Ce concentration up to 50% doping. The system La0.5Ce0.5MnO3 also exhibits MIT instead of charge-ordered state as observed in the hole doped systems of the same composition.  相似文献   
9.
10.
The interfacial interaction strength and transition properties in a reverse selective thin film nanocomposite system, silica-poly[(trimethylsilyl)propyne] (SiO(x)-PTMSP), are investigated locally by heated tip atomic force microscopy. SiO(x)-PTMSP has recently been introduced as a new class of reverse selective membrane materials with extraordinarily high permeability and selectivity (reverse selectivity). Here, we examine the thermal transition properties of the polymer matrix and the debonding strength between PTMSP and silica. Transitions at 330 degrees C were identified as degradation processes. Criteria for debonding were found to include polymer viscoelastic responses, particle size, embedding depth, scan speed, and frequency of impact. Probe-particle impact forces revealed a debonding energy of 2.6 J/m(2) and an impact force transition that occurs 30 degrees C below the degradation temperature in the neat polymer, confirming the presence of enhanced polymer mobility at the SiO(x)-PTMSP interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号