首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   1篇
化学   12篇
力学   3篇
数学   2篇
物理学   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Pressure drop behaviour of ice slurry based on ethanol–water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature ?4.4 °C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham–Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham–Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge–Metzner and Tomita methods.Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power.  相似文献   
2.
During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed‐phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica‐based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel‐free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
The polythiophene nanoparticles (nano-PT) were prepared with average diameter of 20–35 nm. The nanostructurals of polythiophene were confirmed by TEM and SEM analyzes. The kinetics of the thermal degradation and thermal oxidative degradation of nano-PT were investigated by thermogravimetric analysis. Kissinger method, Flynn–Wall–Ozawa method, and advanced isoconversional method have been used to determine the activation energies of nano-PT degradation. The results showed that the thermal stability of nano-PT in pure N2 is higher than that in air atmosphere. The analyzes of the solid-state processes mechanism of nano-PT by Criado et al. method showed: the thermal degradation process of nano-PT goes to a mechanism involving second-order (F 2 mechanism); otherwise, the thermo-oxidative degradation process of nano-PT is corresponding to a phase boundary controlled reaction mechanism (R 2 mechanism).  相似文献   
4.
Three tetra‐amine compounds 2‐((2‐(2‐aminobenzylamino)ethylamino)methyl)benzenamine ( L1 ), 2‐((3‐(2‐aminobenzylamino)propylamino)methyl)benzenamine ( L2 ), and 2‐((4‐(2‐aminobenzylamino)butylamino)methyl)benzenamine ( L3 ) were synthesized and then their reaction with 2‐hydroxybenzaldehyde, 2‐nitrobenzaldehyde, and 2‐hydroxy‐3‐methoxybenzaldehyde were investigated. Treatment of L1 , L2 , and L3 with the former aldehydes gave derivatives of quinazolines in a good yield. The products have been studied with IR, 1H NMR, 13C NMR, COSY, HMQC, and microanalysis.  相似文献   
5.
The zwitterionic intermediate generated from the reaction of triphenylphosphine with electron deficient acetylenic compounds was trapped by various NH acids. The synthesis resulted in a new class of highly functionalized heterocyclic compounds. Some of the reactions produced E and Z isomers. And the stability and transformation of them were studied by dynamic 1H NMR and density functional theory (DFT) calculations.  相似文献   
6.

In this numerical study, laminar flow of water nanofluid/GNP–SDBS (graphene nanoplatelet–sodium dodecylbenzene sulfonate) for 0–0.1% solid nanoparticles mass fraction was investigated for Reynolds numbers of 50–1000 in 3D space via finite volume method. In the newly proposed microchannel design, the cooling fluid is moving in countercurrent in the upper and lower layers of the microchannels, and there are cavities and sinusoidal routes on the solid walls of the microchannel, and the presence of rectangular ribs on the flow centerline along the fluid path enhances mixing for cooling fluid and creates better heat transfer for warm surfaces. The results of this study show that this special design of the microchannel can have a substantial increase in Nusselt number and heat transfer so that in the considered geometry by adding solid nanoparticles mass fraction it is possible to increase average Nusselt number for each Reynolds number by approximately 20%. Also, the mixing of the fluid because of formation of secondary flows has a strong effect on making the temperature distribution uniform in the cooling fluid and solid bed (wall) of the microchannel, especially in the lower layer. The upper layer of the microchannel always has a lower temperature due to indirect contact with heat flux compared with the lower layer. In this study, by increasing Reynolds number and mass fraction of solid nanoparticles the Nusselt number is increased and heat resistance of the lower wall of the microchannel is reduced. Based on the investigation of flow field and heat transfer, the use of the proposed design of the microchannel is recommended for Reynolds number less than 300.

  相似文献   
7.
The production and properties of a biosurfactant, synthesized by a member of the Bacillus subtilis group (PTCC 1696) which was isolated from an Iranian oil field, have been investigated. The biosurfactant, which was produced as a primary metabolite associated with the growth of PTCC 1696, was able to reduce the surface and interfacial tension of media to 26.7 and 0.1 mN/m, respectively. Crude biosurfactant and acid precipitated biosurfactant have critical micelle concentrations of 10 and 100 mug/ml, respectively. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity have been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs and salt concentrations and also has the ability to emulsify oil, which is essential for enhanced oil recovery.  相似文献   
8.
9.
Novel nanofluids based on mesoporous silica for enhanced heat transfer   总被引:1,自引:0,他引:1  
Nanofluids, which are liquids with engineered nanometer-sized particles suspensions, have drawn remarkable attraction from the researchers because of their enormous potential to enhance the efficiency in heat-transfer fluids. In the present study, water-based calcined mesoporous silica nanofluids were prepared and characterized. The commercial mesoporous silica (MPSiO2) nanoparticles were dispersed in deionized water by means of pH adjustment and ultrasonic agitation. MPSiO2 nanoparticles were observed to have an average particle size of 350 ± 100 nm by SEM analysis. The concentration of MPSiO2 was varied between 1 and 6 wt%. The physicochemical properties of nanofluids were characterized using various techniques, such as particle size analyzer, zeta-potential meter, TEM, and FT-IR. The thermal conductivity was measured by Transient Plane Source (TPS) method, and nanofluids showed a higher thermal conductivity than the base liquid for all the tested concentrations.  相似文献   
10.
Journal of Thermal Analysis and Calorimetry - The current study investigates the laminar and two-phase nanofluid flow inside a two-dimensional rectangular microchannel with the ratio of length to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号