首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   6篇
数学   1篇
物理学   2篇
  2022年   1篇
  2019年   1篇
  2012年   1篇
  2008年   1篇
  2003年   1篇
  1996年   1篇
  1995年   1篇
  1963年   1篇
  1956年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
2.
Knowledge and understanding of the stability profile of a drug is important as it affects its safety and efficacy. In the present work, besifloxacin, a new, fourth‐generation fluoroquinolone antibiotic, was subjected to different forced‐degradation conditions as per International Conference on Harmonization (ICH) guidelines such as hydrolysis (acid, base and neutral), oxidation, thermal and photolysis. The drug degraded under acidic, basic, oxidative and photolytic conditions while it was found to be stable under dry heat and neutral hydrolytic conditions. In total, five degradation products (DPs) were formed under different conditions—DP1 and DP2 (photolysis), DP3 (oxidation), DP4 (acidic), DP3 and DP5 (basic). The chromatographic separation of besifloxacin and its degradation products was achieved on a Sunfire C18 (250 mm × 4.6 mm, 5 μm) column with 0.1% aqueous formic acid–acetonitrile as a mobile phase. The gradient RP‐HPLC method was developed and validated as per ICH guidelines. The degradation products were characterized with the help of LC–ESI–QTOF mass spectrometric studies and the most likely degradation pathway of the drug was proposed. In silico toxicity assessment of the drug and its degradation products was carried out, which indicated that DP3 and DP4 carry a mutagenicity alert.  相似文献   
3.
A method is outlined for separation of titanium by anion exchange and subsequent spectrophotometric determination. Titanium fluoride is adsorbed quantitatively on a column of strongly basic anion exchanger and thus separated from ions which would normally interfere. The spectrophotometric measurement is achieved by formation of the intensely yellow and stable titanium ascorbate complex which has a maximum absorbance at 355 mμ.  相似文献   
4.
5.
IMPDH (Inosine 5??-monophosphate dehydrogenase) catalyzes a rate-limiting step in the de novo biosynthesis of guanine nucleotides. IMPDH inhibition in sensitive cell types (e.g., lymphocytes) blocks proliferation (by blocking RNA and DNA synthesis as a result of decreased cellular levels of guanine nucleotides). This makes it an interesting target for cancer and autoimmune disorders. Currently available IMPDH inhibitors such as mycophenolic acid (MPA, uncompetitive inhibitor) and nucleoside analogs (e.g., ribavirin, competitive inhibitor after intracellular activation by phosphorylation) have unfavorable tolerability profiles which limit their use. Hence, the quest for novel IMPDH inhibitors continues. In the present study, a ligand-based virtual screening using IMPDH inhibitor pharmacophore models was performed on in-house compound collection. A total of 50,000 virtual hits were selected for primary screen using in vitro IMPDH II inhibition up to 10???M. The list of 2,500 hits (with >70?% inhibition) was further subjected to hit confirmation for the determination of IC50 values. The hits obtained were further clustered using maximum common substructure based formalism resulting in 90 classes and 7 singletons. A thorough inspection of these yielded 7 interesting classes in terms of mini-SAR with IC50 values ranging from 0.163???M to little over 25???M. The average ligand efficiency was found to be 0.3 for the best class. The classes thus discovered represent structurally novel chemotypes which can be taken up for further development.  相似文献   
6.
A homology model of Mycobacterium avium complex dihydrofolate reductase (MAC DHFR) was constructed on the basis of the X-ray crystal structure of Mycobacterium tuberculosis (Mtb) DHFR. The homology searching of the MAC DHFR resulted in the identification of the Mtb DHFR structure (PDB 1DF7) as the template for the model building. The MAC enzyme sequence was aligned to that of the Mtb counterpart using a modified Needleman and Wunsch methodology. The initial geometry to be modeled was copied from the template, either fully or partially depending on whether the residues were conserved or not, respectively. Using a randomized modeling procedure, 10 independent models of the target protein were built. The cartesian average of all the model structures was then refined using molecular mechanics. The resulting model was assessed for stereochemical quality using a Ramachandran plot and by analyzing the consistency of the model with the experimental data. The structurally and functionally important residues were identified from the model. Further, 5-deazapteridines recently reported as inhibitors of MAC DHFR were docked into the active site of the developed model. All the seven inhibitors used in the docking study have a similar docking mode at the active site. The network of hydrogen bonds around the 2,4-diamino-5-deazapteridine ring was found to be crucial for the binding of the inhibitors with the active site residues. The 5-methyl group of the inhibitors was located in a narrow hydrophobic pocket at the bottom of the active site. The relative values of the three torsion angles of the inhibitors were found to be important for the proper orientation of the inhibitor functional groups into the active site.  相似文献   
7.
Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of −OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.  相似文献   
8.
9.
Iron haematinics are high-volume, low-cost drug products used to treat anaemia. For the preparation of iron haematinics, the manufacturers depend heavily on multipurpose-batch or semi-batch reactors. Here, process intensification of haematinics was carried out using membrane nanofiltration as a major operation. A total of three haematinics namely, iron (III) hydroxide polymaltose, iron gluconate, and iron sucrose complex were prepared, and the process intensified on dead-end filtration set up by using a polymeric membrane. Iron (III) hydroxide polymaltose experimental results were compared with commercially available standard. The membrane performance was characterized by various parameters such as flux, permeability, flux decline ratio, flux recovery ratio, percentage retention, fouling, etc., at different transmembrane pressures. The membrane surface was analysed by Scanning Electron Microscopy (SEM) to understand its morphology and fouling. The iron concentration was detected in the permeate stream using inductively coupled plasma optical emission (ICP-OES) spectroscopy to detect %retention (>99.99%) under all experimental conditions tested. The study led to optimized conditions for haematinics concentration by a membrane at a 10-bar trans-membrane pressure, which was applied for the preparation of iron gluconate salt. Overall, the study resulted in a green process with increased productivity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号