首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
化学   15篇
物理学   4篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
3.
The three secondary phosphine oxides [CH2=CH(CH2)4]2HPO ( 1 ), [CH2=CH(CH2)5]2HPO ( 2 ), and [CH2=CH(CH2)6]2HPO ( 3 ), and two diphosphine dioxides, {[CH2=CH(CH2)6]2PO(CH2)7}2 ( 4 ) and {[CH2=CH(CH2)6]2PO(CH2)4}2 ( 5 ), incorporating long methylene chains, are described. The single crystal X‐ray structures of 1 , 2 , and 5 have been determined. The phosphine oxides 3 , 4 , and 5 have been adsorbed on silica in submonolayer quantities to give 3 a – 5 a . The 1H, 13C, and 31P solid‐state NMR spectra of polycrystalline 3 – 5 have been analyzed and compared with those of 3 a – 5 a . The changes of the solid‐state NMR characteristics upon adsorption and the surface mobilities of the phosphine oxides are discussed.  相似文献   
4.
5.
Covering: 1997 to 2010. The angucycline group is the largest group of type II PKS-engineered natural products, rich in biological activities and chemical scaffolds. This stimulated synthetic creativity and biosynthetic inquisitiveness. The synthetic studies used five different strategies, involving Diels-Alder reactions, nucleophilic additions, electrophilic additions, transition-metal mediated cross-couplings and intramolecular cyclizations to generate the angucycline frames. Biosynthetic studies were particularly intriguing when unusual framework rearrangements by post-PKS tailoring oxidoreductases occurred, or when unusual glycosylation reactions were involved in decorating the benz[a]anthracene-derived cores. This review follows our previous reviews, which were published in 1992 and 1997, and covers new angucycline group antibiotics published between 1997 and 2010. However, in contrast to the previous reviews, the main focus of this article is on new synthetic approaches and biosynthetic investigations, most of which were published between 1997 and 2010, but go beyond, e.g. for some biosyntheses all the way back to the 1980s, to provide the necessary context of information.  相似文献   
6.
Research on Chemical Intermediates - A routine release of slow-degrading agrochemicals in the environment has resulted in their gradual accumulation posing a major threat both to the terrestrial...  相似文献   
7.
Recent isolation of the gene for an undecaprenyl diphosphate synthase has disclosed the structures of many kinds of cis-prenyl chain elongating enzymes. Not only the primary structure but also the crystal structure of the cis-prenyltransferase is totally different from those of trans-prenyl chain elongating enzymes. This review covers up to February 2002 and contains 72 references.  相似文献   
8.
9.
Ravidomycin V and related compounds, e.g., FE35A-B, exhibit potent anticancer activities against various cancer cell lines in the presence of visible light. The amino sugar moieties (D-ravidosamine and its analogues, respectively) in these molecules contribute to the higher potencies of ravidomycin and analogues when compared to closely related compounds with neutral or branched sugars. Within the ravidomycin V biosynthetic gene cluster, five putative genes encoding NDP-D-ravidosamine biosynthetic enzymes were identified. Through the activities of the isolated enzymes in vitro, it is demonstrated that ravD, ravE, ravIM, ravAMT and ravNMT encode TDP-D-glucose synthase, TDP-4-keto-6-deoxy-D-glucose-4,6-dehydratase, TDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase, TDP-3-keto-6-deoxy-D-galactose-3-aminotransferase, and TDP-3-amino-3,6-dideoxy-D-galactose-N,N-dimethyl-transferase, respectively. A protocol for a one-pot enzymatic synthesis of TDP-D-ravidosamine has been developed. The results presented here now set the stage to produce TDP-D-ravidosamine routinely for glycosylation studies.  相似文献   
10.
The functional roles of all proposed enzymes involved in the post-PKS redox reactions of the biosynthesis of various landomycin aglycones were thoroughly studied, both in vivo and in vitro. The results revealed that LanM2 acts as a dehydratase and is responsible for concomitant release of the last PKS-tethered intermediate to yield prejadomycin (10). Prejadomycin (10) was confirmed to be a general pathway intermediate of the biosynthesis. Oxygenase LanE and the reductase LanV are sufficient to convert 10 into 11-deoxylandomycinone (5) in the presence of NADH. LanZ4 is a reductase providing reduced flavin (FMNH) co-factor to the partner enzyme LanZ5, which controls all remaining steps. LanZ5, a bifunctional oxygenase-dehydratase, is a key enzyme directing landomycin biosynthesis. It catalyzes hydroxylation at the 11-position preferentially only after the first glycosylation step, and requires the presence of LanZ4. In the absence of such a glycosylation, LanZ5 catalyzes C5,6-dehydration, leading to the production of anhydrolandomycinone (8) or tetrangulol (9). The overall results provided a revised pathway for the biosynthesis of the four aglycones that are found in various congeners of the landomycin group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号