首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2021年   1篇
  2018年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
This study aimed to investigate the effect of resin impregnation on the interfacial shear strength (IFSS), thermogravimetric (TG) and fourier transform infrared (FT-IR) of sugar palm (Arenga pinnata) fibres. In addition, the effect of resin impregnation on the mechanical properties of sugar palm fibre reinforced unsaturated polyester (UP) composites was also studied. The fibres were impregnated with UP via vacuum resin impregnation process at a pressure of 600 mmHg for 5 min. Composites of 10, 20, 30, 40 and 50 % fibre loadings were fabricated and tested for tensile and flexural properties. It was observed that the impregnation process caused the fibres to be enclosed by UP resin and this gave a strong influence to the increase of its interfacial bonding by the increase of its IFSS from single fibre pull-out test. It was also observed with TG and FT-IR spectra that the impregnated fibre had lower moisture uptake than the control and there was no significant increase in thermal stability of the impregnated fibre. The sequence of fibre decomposition started from the evaporation of moisture, hemicelluloses, cellulose, lignin and finally ash content and the presence of these components were proven by FT-IR spectra. For the composite specimens, due to the high interfacial bonding of the impregnated fibre and the matrix, the impregnated composites showed consistently higher tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus and toughness than the control samples. It was also observed that 30 % fibre loading gave optimum properties.  相似文献   
2.
This article aims to address the problems associated with the encapsulation of oxirane ring containing compounds in poly(urea-formaldehyde) (PUF) shell for application in self-healing composite systems. The main objectives were to produce non-agglomerated, stable microcapsules, and to control the pH drop during the encapsulation via oil-in-water emulsion polymerization. In the modified method; two stage additions of urea and formaldehyde monomers, core to shell ratio, weight percent and combination of two surfactants/emulsifiers were altered to produce the desired product. Analysis was done with optical microscope (OM), scanning electron microscopy (SEM), FTIR, particle size analyzer, and thermogravimetric analysis (TGA). The pH drop was confirmed by using a common epoxy resin, an epoxy functionalized polydimethylsiloxane (E-PDMS), and epoxidized palm oil (EPO) as cores. The modified oil-in-water emulsion polymerization of PUF was effective in preventing the pH drop during the encapsulation and a product stable for more than 3 months with less agglomeration was produced. The method produced microcapsules having diameters less than 100 μm at lower agitation rates. The modified method is only applicable to epoxy resin and not for compounds like amine hardeners. The use of stable microcapsules in self-healing coatings can lead towards cost reduction implied for repair and maintenance purposes.  相似文献   
3.
Every petroleum-processing plant produces sewage sludge containing several types of polycyclic aromatic hydrocarbons (PAHs). The degradation of PAHs via physical, biological, and chemical methods is not yet efficient. Among biological methods, the use of marine sponge symbiont bacteria is considered an alternative and promising approach in the degradation of and reduction in PAHs. This study aimed to explore the potential performance of a consortium of sponge symbiont bacteria in degrading anthracene and pyrene. Three bacterial species (Bacillus pumilus strain GLB197, Pseudomonas stutzeri strain SLG510A3-8, and Acinetobacter calcoaceticus strain SLCDA 976) were mixed to form the consortium. The interaction between the bacterial consortium suspension and PAH components was measured at 5 day intervals for 25 days. The biodegradation performance of bacteria on PAH samples was determined on the basis of five biodegradation parameters. The analysis results showed a decrease in the concentration of anthracene (21.89%) and pyrene (7.71%), equivalent to a ratio of 3:1, followed by a decrease in the abundance of anthracene (60.30%) and pyrene (27.52%), equivalent to a ratio of 2:1. The level of pyrene degradation was lower than that of the anthracene due to fact that pyrene is more toxic and has a more stable molecular structure, which hinders its metabolism by bacterial cells. The products from the biodegradation of the two PAHs are alcohols, aldehydes, carboxylic acids, and a small proportion of aromatic hydrocarbon components.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号