首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   22篇
  国内免费   1篇
化学   153篇
晶体学   1篇
数学   14篇
物理学   16篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   12篇
  2018年   6篇
  2017年   5篇
  2016年   12篇
  2015年   7篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   17篇
  2010年   5篇
  2009年   1篇
  2008年   14篇
  2007年   9篇
  2006年   13篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1974年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有184条查询结果,搜索用时 31 毫秒
1.
There are marine cytotoxic bromotriterpenoids, named the thyrsiferol family that are structurally characterized by some tetrahydropyran (THP) and tetrahydrofuran (THF) rings. The thyrsiferol family belongs to natural products that are often difficult to determine their stereostructures even by the current, highly advanced spectroscopic methods, especially in acyclic systems including stereogenic tetrasubstituted carbon centers. In such cases, it is effective to predict and synthesize the possible stereostructures. Herein, to elucidate ambiguous stereostructures and unassigned absolute configurations of aplysiol B, laurenmariannol, and saiyacenol A, members of the thyrsiferol family, we carried out their asymmetric chemical syntheses featuring 6-exo and 5-exo oxacyclizations of epoxy alcohol precursors and 6-endo bromoetherification of a bishomoallylic alcohol. In this paper, we report total assignments of their stereostructures through their asymmetric chemical syntheses and also their preliminary cytotoxic activities against some tumor cells. These results could not have been achieved without depending on asymmetric total synthesis.  相似文献   
2.
3.
4.
5.
Noncovalent interactions, such as hydrogen bonding, metal coordination, and π-π stacking, are increasingly being utilized to develop well-ordered and self-organized supramolecular materials. Recently, new types of nonclassical weak interactions, such as C H···π, C H···F C, and C H···O, have been exploited in stabilizing the specific conformations of molecules and molecular assemblies in the solid state. These noncovalent interactions play an important role in materials comprised of polymer chains, because cooperative effects from a large number of weak interactions can lead to drastic changes in its conformation, several properties, and functionalities. The programmed design of synthetic helical polymer with well-defined molecular conformation has been the main subject in modern polymer science and engineering. Silicon-catenated polysilane is an ideal helical silicon quantum wire and polymers with unique photophysical properties. The present review highlights the spectroscopic evidences for through-space weak Si···F C interaction in poly(methyl-3,3,3-trifluoropropylsilane) ( 1 ) in noncoordinating and coordinating solvents by means of NMR (29Si and 19F) and IR spectroscopies, and viscometric measurement. It was found that 1 is applicable for chemosensors with an extremely high sensitivity and selectivity toward fluoride ions in tetrahydrofuran (THF) and with high sensitivity for nitroaromatic compounds, detected by a decrease in the photoluminescence intensity in THF and in thin solid film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5060–5075, 2006  相似文献   
6.
In this paper we solve the following problems: (i) find two differential operatorsP andQ satisfying [P, Q]=P, whereP flows according to the KP hierarchy P/t n =[(P n/p )+,P], withp:=ordP2; (ii) find a matrix a integral representation for the associated -function. First we construct an infinite dimensional spaceW= span{ 0(z, 1(z,...)} of functions ofz invariant under the action of two operators, multiplication byz p andA c :=z/zz+c. This requirement is satisfied, for arbitraryp, if 0 is a certain function generalizing the classical Hänkel function (forp=2); our representation of the generalized Hänkel function as adouble Laplace transform of a simple function, which was unknown even for thep=2 case, enables us to represent the -function associated with the KP time evolution of the spaceW as a double matrix Laplace transform in two different ways. One representation involves an integration over the space of matrices whose spectrum belongs to a wedge-shaped contour -+ - defined by ± = +e±i/p. The new integrals above relate to matrix Laplace transforms, in contrast with matrix Fourier transforms, which generalize the Kontsevich integrals and solve the operator equation [P, Q]=1.The support of a National Science Foundation grant #DMS-95-4-51179 is gratefully acknowledged.The hospitality of the Volterra Center at Brandeis University is gratefully acknowledged.The hospitality of the University of Louvain and Brandeis University is gratefully acknowledged.The support of a National Science Foundation grant #DMS-95-4-51179, a Nato, an FNRS and a Francqui Foundation grant is gratefully acknowledged.  相似文献   
7.
8.
A theoretical study of alcohol oxidation by ferrate   总被引:2,自引:0,他引:2  
The conversion of methanol to formaldehyde mediated by ferrate (FeO(4)2-), monoprotonated ferrate (HFeO4-), and diprotonated ferrate (H2FeO4) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the O-H and C-H bonds of methanol via two entrance reaction channels: (1) an addition-elimination mechanism that involves coordination of methanol to diprotonated ferrate; (2) a direct abstraction mechanism that involves H atom abstraction from the O-H or C-H bond of methanol. Within the framework of the polarizable continuum model (PCM), the energetic profiles of these reaction mechanisms in aqueous solution are calculated and investigated. In the addition-elimination mechanism, the O-H and C-H bonds of ligating methanol are cleaved by an oxo or hydroxo ligand, and therefore the way to the formation of formaldehyde is branched into four reaction pathways. The most favorable reaction pathway in the addition-elimination mechanism is initiated by an O-H cleavage via a four-centered transition state that leads to intermediate containing an Fe-O bond, followed by a C-H cleavage via a five-centered transition state to lead to formaldehyde complex. In the direct abstraction mechanism, the oxidation reaction can be initiated by a direct H atom abstraction from either the O-H or C-H bond, and it is branched into three pathways for the formation of formaldehyde. The most favorable reaction pathway in the direct abstraction mechanism is initiated by C-H activation that leads to organometallic intermediate containing an Fe-C bond, followed by a concerted H atom transfer from the OH group of methanol to an oxo ligand of ferrate. The first steps in both mechanisms are all competitive in energy, but due to the significant energetical stability of the organometallic intermediate, the most likely initial reaction in methanol oxidation by ferrate is the direct C-H bond cleavage.  相似文献   
9.
10.
Two new phenolic compounds, glicophenone (1) and glicoisoflavanone (2), were isolated from commercial licorice, and their structures were elucidated on the basis of spectroscopic data. Antibacterial assays of licorice phenolics for Staphylococcus aureus, including four strains of methicillin-resistant S. aureus (MRSA), and also for Escherichia coli K12 and Pseudomonas aeruginosa PAO1, were then examined. Two compounds among them, 8-(gamma,gamma-dimethylallyl)-wighteone (21) and 3'-(gamma,gamma-dimethylallyl)-kievitone (28), showed remarkable antibacterial effects [minimum inhibitory concentrations (MICs), 8 microg/ml on the MRSA strains and methicillin-sensitive S. aureus. Licochalcone A (14), gancaonin G (20), isoangustone A (24), glyasperins C (30) and D (31), glabridin, (32), licoricidin (33), glycycoumarin (34) and licocoumarone (40) showed antibacterial effects on the MRSA strains with MIC values of 16 microg/ml. Effects on the beta-lactam resistance of the MRSA strains were also examined, and licoricidin (33) noticeably decreased the resistance of the MRSA strains against oxacillin, as shown by the reduction in the MICs of oxacillin (lower than 1/128-1/1000 in the presence of 8 microg/ml of 33, and 1/8-1/32 in the presence of 4 microg/ml of 33). Mechanistic study suggested that 33 does not inhibit the formation of penicillin-binding protein 2' (PBP2'), but affects the enzymatic function of PBP2'.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号