首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2021年   1篇
  2020年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
N-heterocyclic carbene (NHC)-palladium(II) complex (GO@NHC-Pd) was synthesized on graphene oxide (GO) support via a simple and cost-effective multistep approach. The spectroscopic, microscopic, thermal, and surface analyses of GO@NHC-Pd confirmed the successful formation of the catalyst. The investigation of catalytic activity showed that GO@NHC-Pd was very effective in Suzuki–Miyaura as well as Hiyama cross-coupling. Being heterogeneous in nature, GO@NHC-Pd was recovered after each reaction cycle easily and reused for up to nine and six cycles in Suzuki–Miyaura and Hiyama cross-coupling, respectively, without significant loss of activity. Further exploration of the supercapacitor performance of GO@NHC-Pd catalyst assembled in a two-electrode cell configuration shown a maximum attained capacitance of 105.26 F/g at a current density of 0.1 A/g with good cycling stability of 96.89% over 2,500 cycles.  相似文献   
2.
The utilization of deoxyribonucleic acid (DNA) in nanotechnology is a promising area of research wherein the distinct properties of DNA are exploited for the design and development of new materials and applications. The biodegradability and natural profusion of DNA makes it highly suitable for use in various fields. In this report, we have treated DNA as a bioligand, supported on functionalized magnetite for the grafting of palladium (Pd) nanoparticles to make Pd-DNA bio-nanocatalyst. The Pd-DNA was subjected to Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Brunauer–Emmett–Teller, energy dispersive X-ray spectroscopy, vibrating sample magnetometry, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry analysis. The prepared Pd-DNA was found to be highly efficient in catalyzing Suzuki–Miyaura cross-coupling reaction with excellent yields when compared with commercially available palladium-based catalysts. Also, the Pd-DNA could be easily recovered from the reaction mass using an external magnet and recycled up to six times without substantial loss of activity. Furthermore, Felbinac, a non-inflammatory drug, was synthesized in quantitative yields using the Pd-DNA bio-nanocatalyst.  相似文献   
3.
Transition Metal Chemistry - A greener approach for the synthesis of various functionalized biaryl frameworks in good to excellent yield through palladium-catalyzed denitrogenative cross-coupling...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号