首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   6篇
  国内免费   13篇
化学   47篇
晶体学   1篇
力学   10篇
综合类   11篇
数学   7篇
物理学   51篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   10篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
1.
Pyrrolidine, an important feedstock in the chemical industry, is commonly produced via vapor-phase catalytic ammoniation of tetrahydrofuran (THF). Obtaining pyrrolidine with high purity and low energy cost has extremely high economic and environmental values. Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and THF by using nonporous adaptive crystals of per-ethyl pillar[6]arene (EtP6). EtP6 crystals show a superior preference towards pyrrolidine in 50 : 50 (v/v) pyrrolidine/THF mixture vapor, resulting in rapid separation. The purity of pyrrolidine reaches 95% in 15 min of separation, and after 2 h, the purity is found to be 99.9%. Single-crystal structures demonstrate that the selectivity is based on the stability difference of host–guest structures after uptake of THF or pyrrolidine and non-covalent interactions in the crystals. Besides, EtP6 crystals can be recycled efficiently after the separation process owing to reversible transformations between the guest-free and guest-loaded EtP6.

Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and tetrahydrofuran by using nonporous adaptive crystals of per-ethyl pillar[6]arene.

Pyrrolidine is an important feedstock in the chemical industry that has been widely used in the production of food, pesticides, daily chemicals, coatings, textiles, and other materials.1 Particularly, pyrrolidine is a raw material for organic synthesis of medicines such as buflomedil, pyrrocaine, and prolintane.2 Moreover, pyrrolidine is also used as a solvent in the semi-synthetic process of simvastatin, one of the best-selling cardiovascular drugs.3 In the chemical industry, there are many preparation methods for pyrrolidine. The most common way to obtain pyrrolidine is the gas-phase catalytic method using tetrahydrofuran (THF) and ammonia as raw materials;4 this is carried out at high temperature under catalysis by solid acids. However, separating pyrrolidine from the crude product is difficult because of similar molecular weights and structures between pyrrolidine (b.p. 360 K and saturated vapor pressure = 1.8 kPa at 298 K) and THF (b.p. 339 K and saturated vapor pressure = 19.3 kPa at 298 K), which result in complicated processes and large energy consumption.5 Therefore, it is worthwhile to find energy-efficient and simple methods to separate pyrrolidine from THF.Many techniques and materials, including porous zeolites, metal–organic frameworks (MOFs), and porous polymers, have facilitated energy-efficient separations of important petrochemicals and feedstocks, including THF and pyrrolidine.6,7 However, some drawbacks of these materials cannot be ignored.8 For example, the relatively low thermal and moisture stabilities of MOFs limit their practical applications. Therefore, the development of new materials with satisfactory chemical and thermal stabilities for pyrrolidine/THF separation is of high significance.In the past decade, pillararenes have been widely studied in supramolecular chemistry.9 Owing to their unique pillar structures and diverse host–guest recognitions, pillararenes have been used in the construction of numerous supramolecular systems.10 Recently, nonporous adaptive crystals (NACs) of macrocycles, which have shown extraordinary performance in adsorption and separation, have been developed by our group as a new type of adsorption and separation materials.11 Unlike MOFs, covalent-organic frameworks (COFs), and other materials with pre-existing pores, NACs do not have “pores“ in the guest-free form, whereas they adsorb guest vapors through cavities of macrocycles and spaces between macrocycles. NACs have been applied in separations of many significant chemicals such as alkane isomers, aromatics, and halohydrocarbon isomers.12 However, such materials have never been used to separate pyrrolidine and THF. Herein, we utilized pillararene crystals as a separation material and realized the selective separation of pyrrolidine from a mixture of pyrrolidine and THF. We found that nonporous crystals of per-ethyl pillar[6]arene (EtP6) exhibited a shape-sorting ability at the molecular level towards pyrrolidine with an excellent preference, while crystals of per-ethyl pillar[5]arene (EtP5) did not (Scheme 1). In-depth investigations revealed that the separation was driven by the host–guest complexation between pyrrolidine and EtP6, which resulted in the formation of a more stable structure upon adsorption of pyrrolidine vapor in the crystalline state. EtP6 crystals can also adsorb THF. However, when these two chemicals simultaneously exist as the vapor of a 50 : 50 (v/v) mixture, EtP6 prefers pyrrolidine as an adsorption target. Compared with previously reported NAC-based separation, this separation took place rapidly. 95% purity was achieved in 15 min, and the purity increased to 99.9% after 2 h of separation. Moreover, pyrrolidine was removed upon heating, along with the structural transformation of EtP6 back to its original state, endowing EtP6 with excellent recyclability.Open in a separate windowScheme 1Chemical structures and cartoon representations: (a) EtP5 and EtP6; (b) THF and pyrrolidine.EtP5 and EtP6 were prepared as previously described and then a pretreatment process was carried out to obtain guest-free EtP5 and EtP6 (Fig. S1–S4†).13 According to powder X-ray diffraction (PXRD) patterns, activated EtP5 and EtP6 (denoted as EtP5α and EtP6β, respectively) were crystalline, and the patterns matched previous reports (Fig. S5 and S6).14 Studies from our group indicated that EtP5α and EtP6β crystals were nonporous, presumably due to their dense packing modes.We first investigated the adsorption capabilities of EtP5α and EtP6β towards pyrrolidine and THF vapors. Based on time-dependent solid–vapor adsorption procedures, both EtP5α and EtP6β showed good ability to adsorb pyrrolidine and THF vapors. As shown in Fig. 1a, the adsorption amount of THF in EtP5α was higher than that of pyrrolidine. It took 6 hours for EtP5α to reach saturation points for adsorption of both pyrrolidine and THF vapors. The final storage of THF in EtP5α was 2 : 1 (molar ratio to the host), whereas the storage of pyrrolidine was 1 : 1. It seemed that the THF vapor was favored to occupy EtP5α, which was ascribed to the relatively lower boiling point of THF. A similar phenomenon was found for EtP6β. Time-dependent solid–vapor adsorption experiments for pyrrolidine demonstrated that it took just 1 hour to reach the saturation point, while it took 4 hours for the THF vapor (Fig. 1b). The adsorption amount of THF vapor was twice that of pyrrolidine. 1H NMR spectra and thermogravimetric analyses (TGA) further confirmed the adsorption and storage of THF and pyrrolidine in both hosts (Fig. S7–S16†). Meanwhile, in the desorption process, adsorbed pyrrolidine and THF in EtP6β were easily released under reduced pressure and heating. Based on these data, it was clear that pyrrolidine could be adsorbed rapidly by both EtP5α and EtP6β in molar ratios = 1 : 1, while THF could be captured in a relatively slow process. Structural changes after adsorption of these two vapors were analyzed via PXRD experiments, in which varying degrees of changes before and after adsorption were observed, evidencing the appearance of new crystal structures (Fig. 1c and d). Nevertheless, only slight differences were observed in the PXRD patterns after the adsorption of THF or pyrrolidine, which might be ascribed to the structural similarity of the two molecules.Open in a separate windowFig. 1Time-dependent solid–vapor adsorption plots of (a) EtP5α and (b) EtP6β for single-component pyrrolidine and THF vapors. PXRD patterns of (c) EtP5α and (d) EtP6β: (I) original activated crystals; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor.To study the mechanism of adsorption, guest-loaded single crystals were obtained by slowly evaporating either THF or pyrrolidine solutions of pillararenes (Tables S2 and S3). In the crystal structure of THF-loaded EtP5 (2THF@EtP5, Fig. 2a and S17),11a two THF molecules are in the cavity of one EtP5 molecule driven by multiple C–H⋯O hydrogen bonds and C–H⋯π bonds. EtP5 assembles into honeycomb-like infinite edge-to-edge 1D channels. In the crystal structure of pyrrolidine-loaded EtP5 (pyrrolidine@EtP5, Fig. 2b and S19), one pyrrolidine molecule, stabilized by C–H⋯π interactions and C–H⋯O hydrogen bonds between hydrogen atoms on pyrrolidine and oxygen atoms on EtP5, is found in the cavity of EtP5. It''s worth mentioning that a hydrogen atom which is linked with the N atom of pyrrolidine also forms a strong hydrogen bond with an oxygen atom on the ethoxy group of EtP5. EtP5 forms imperfect 1D channels because of partial distortion of orientation. The PXRD patterns simulated from these crystal structures matched well with the experimental results (Fig. S18 and S20), which verified that the uptake of vapors transformed EtP5α into pyrrolidine-loaded EtP5.Open in a separate windowFig. 2Single crystal structures: (a) 2THF@EtP5; (b) pyrrolidine@EtP5.In the crystal structure of THF-loaded EtP6 (2THF@EtP6, Fig. 3a and S21), one EtP6 molecule encapsulated two THF molecules in its cavity with C–H⋯O interactions, forming a 1 : 2 host–guest complex. Although 1D channels are observed, EtP6 adopts a slightly different conformation, caused by the presence of THF. Moreover, the PXRD pattern of EtP6β after adsorption of THF vapor matches well with that simulated from 2THF@EtP6, which is evidence for the structural transformation upon adsorption. In the crystal structure of pyrrolidine-loaded EtP6 (pyrrolidine@EtP6, Fig. 3b and S23), a 1 : 1 host–guest complex with pyrrolidine is found. Driven by C–H⋯π interactions and C–H⋯O hydrogen bonds formed by hydrogen atoms on pyrrolidine and oxygen atoms on EtP6, one pyrrolidine molecule is in the cavity of EtP6 with the nitrogen atom inside the cavity. The window-to-window packing mode of hexagonal EtP6 molecules in pyrrolidine@EtP6 contributes to the formation of honeycomb-like infinite edge-to-edge 1D channels, favorable for guest adsorption. Likewise, the PXRD result of EtP6β after adsorption of pyrrolidine is in line with the simulated pattern of pyrrolidine@EtP6, indicating that EtP6β transformed into pyrrolidine@EtP6 in the presence of pyrrolidine (Fig. S22 and S24).Open in a separate windowFig. 3Single crystal structures: (a) 2THF@EtP6; (b) pyrrolidine@EtP6.According to the adsorption ability and different crystal structures after adsorption of guest vapors, we wondered whether EtP5α or EtP6β could separate mixtures of THF and pyrrolidine. We first evaluated separation by EtP5α. GC analysis indicated that the adsorption ratios of THF and pyrrolidine were 65.7% and 34.3%, respectively, when EtP5α was exposed to 50 : 50 (v/v) pyrrolidine/THF mixture vapor (Fig. 4a and S25). Such adsorption was also illustrated by 1H NMR (Fig. S26). Although EtP5α showed a preference for THF, the selectivity is not satisfactory and cannot be applied to industrial separation. The less satisfactory selectivity may be ascribed to the similar crystal structures of EtP5 after adsorption of THF or pyrrolidine and insufficient strong stabilizing interactions. The PXRD pattern of EtP5α after adsorption of the 50 : 50 (v/v) pyrrolidine/THF mixture vapor exhibited minor differences compared with that simulated from either 2THF@EtP5 or pyrrolidine@EtP5, due to poor selectivity (Fig. 4b).Open in a separate windowFig. 4(a)Time-dependent solid–vapor adsorption plot for EtP5α in the presence of 50 : 50 (v/v) pyrrolidine/THF mixture vapor. (b) PXRD patterns of EtP5α: (I) original EtP5α; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor; (IV) after adsorption of pyrrolidine/THF mixture vapor; (V) simulated from the single crystal structure of pyrrolidine@EtP5α; (VI) simulated from the single crystal structure of 2THF@EtP5α. (c) Time-dependent solid–vapor adsorption plot for EtP6β in the presence of 50 : 50 (v/v) pyrrolidine/THF mixture vapor. (d) PXRD patterns of EtP6β: (I) original EtP6β; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor; (IV) after adsorption of pyrrolidine/THF mixture vapor; (V) simulated from the single crystal structure of pyrrolidine@EtP6β; (VI) simulated from the single crystal structure of 2THF@EtP6β.Nevertheless, selective separation of THF and pyrrolidine was achieved with EtP6β. As shown in Fig. 4c, time-dependent solid–vapor adsorption experiments for a 50 : 50 (v/v) pyrrolidine/THF mixture were conducted. Unlike the phenomenon in single-component adsorption experiments, uptake of pyrrolidine by EtP6β increased and reached the saturation point rapidly (less than 2 hours), while capture of THF was negligible. According to the NMR and GC results (Fig. S27 and S28), the purity of pyrrolidine was determined to be 99.9% after 2 hours of adsorption, which indicates the remarkable selectivity of EtP6β for pyrrolidine. The PXRD pattern of EtP6β after adsorption of the mixture was consistent with that from single-component adsorption, indicating the structural transformation in the crystalline state upon selective capture of pyrrolidine from the mixture. Although THF and pyrrolidine have similar molecular structures, their non-covalent interactions with EtP6 are different. We assume that the hydrogen bond between N–H and the oxygen atom on EtP6 stabilizes pyrrolidine and leads to such selectivity. More importantly, compared with previous adsorption processes using NACs reported by our group, the selective separation of pyrrolidine was completed rapidly. According to the GC results, the purity of pyrrolidine reached around 95% in the initial 15 min, while it usually takes hours for selective separations of other substrates using NACs. Increasing the adsorption time to 2 h improves the purity to over 99%. The rapid separation of pyrrolidine with high purity using EtP6β shows great potential in industrial applications.Apart from selectivity, recyclability is also an important parameter for an adsorbent. Consequently, recycling experiments were carried out by heating pyrrolidine@EtP6 under vacuum at 100 °C to remove adsorbed pyrrolidine. According to TGA and PXRD analysis, the recycled EtP6 solid maintained crystallinity and structural integrity that were the same as those of activated EtP6 crystals (Fig. S29 and S30). Besides, it is worth mentioning that the recycled EtP6 solids were still capable of separating mixtures of pyrrolidine and THF without loss of performance after being recycled five times (Fig. S31).In conclusion, we explored the separation of pyrrolidine/THF mixtures using NACs of EtP5 and EtP6. Pyrrolidine was purified using EtP6 from a 50 : 50 (v/v) pyrrolidine/THF mixture with a purity of 99.9%, but EtP5 exhibited selectivity towards THF. Moreover, the separation of pyrrolidine by EtP6 was extremely fast so that over 95% purity was determined within 15 min of adsorption. The rapid separation is unique among NAC-based separations. Single-crystal structures revealed that the selectivity depended on the stability of the new structures after adsorption of the guests and the non-covalent interactions in the host–guest complexes. PXRD patterns indicated that the structures of the host crystals changed into the host–guest complexes after adsorption. Additionally, the NACs of EtP6 exhibited excellent recyclability over at least five runs; this endows EtP6 with great potential as an alternative adsorbent for rapid purification of pyrrolidine that can be applied in practical industry. The fast separation with such simple NACs in this work also reveals that minor structural differences can cause significant changes in properties, which should provide perspectives on designs of adsorbents or substrates with specifically tailored binding sites.  相似文献   
2.
高功率宽调谐范围掺Yb3+光子晶体光纤激光器   总被引:1,自引:0,他引:1  
采用闪耀光栅作为色散元件,构建了前向、后向输出两种结构的可调谐掺Yb3 光子晶体光纤激光器,并对其输出特性进行了分析研究.在抽运功率5.75W时,前向输出结构实现了1050.6~1110.2 nm的连续调谐输出,光谱线宽约0.1 nm,边模抑制比大于44 dB.在调谐激光波长为1085 nm时,得到最高输出功率677 mW.结构改进的后向输出结构的可调谐输出结构在抽运功率4.43 W,调谐波长1075 nm,实现了2.21 W的功率输出,斜率效率为73%;调谐范围50.9 nm(1042.1~1093 nm),光谱线宽小于0.08 nm,边模抑制比大于50 dB.两种结构的可调谐激光器输出均为线偏振光,偏振度大于89.5%.  相似文献   
3.
The top-down fabrication of catalytically active molecular metal oxide anions, or polyoxometalates, is virtually unexplored, although these materials offer unique possibilities, for catalysis, energy conversion and storage. Here, we report a novel top-down route, which enables the scalable synthesis and deposition of sub-nanometer molybdenum-oxo clusters on electrically conductive mesoporous carbon. The new approach uses a unique redox-cycling process to convert crystalline MoIVO2 particles into sub-nanometer molecular molybdenum-oxo clusters with a nuclearity of ∼1–20. The resulting molybdenum-oxo cluster/carbon composite shows outstanding, stable electrocatalytic performance for the oxygen reduction reaction with catalyst characteristics comparable to those of commercial Pt/C. This new material design could give access to a new class of highly reactive polyoxometalate-like metal oxo clusters as high-performance, earth abundant (electro-)catalysts.

The top-down synthesis and deposition of polyoxometalate-like clusters on porous carbon is reported together with the high electrocatalytic oxygen reduction reactivity of the composite.  相似文献   
4.
In the presence of a water-soluble pillar[6]arene WP6 containing 12 imidazolium groups, silver nanoparticles were successfully prepared and investigated in detail by ultraviolet visible spectroscopy, X-ray diffraction, and transmission electron microscopy. Excitingly, these pillar[6]arene stabilized silver nanoparticles were demonstrated to function as a colorimetric sensor to selectively probe glutamic acid in water.  相似文献   
5.
In the field of evolutionary genome analysis, biologists seek to identify important genes or chromosome regions by comparing phylogenetic trees and analyzing the mutation at which locus might affect phenotypic traits. Unfortunately, the tree comparison and accompanying analysis are often performed manually. In this paper, we characterize the workflow of evolutionary genome analysis and present a task analysis for the fundamental questions asked by biologists during the analysis procedure. We propose two algorithms to enable quantitative tree comparison. One is to measure the differences between corresponding leaf nodes on two trees, and the other is to compute the classification inconsistency of each leaf node by comparing tree structure with a given biological classification. Configuring with the obtained difference and inconsistency, we present a visual analysis system, visual comparison of phylogenetic trees for evolutionary genome analysis, which not only enables biologists to intuitively explore trees but also identify locus which affects their traits by comparing SNP variants of selected leaf nodes. We conclude with case studies from two biologists who used our system to augment their previous manual analysis workflow and demonstrate that our system can reveal more insight.  相似文献   
6.
直接由SiO_2低温合成含硅聚氨酯及其结构表征   总被引:10,自引:0,他引:10  
有机硅材料是一类应用非常广泛的材料,但这些产品所用基本原料几乎都来源于石英沙(SiO2)的高温碳热还原[1],这个方法已大规模的工业化,但它的高能耗、高腐蚀成为人们越来越关注的问题.1991年美国Laine[2]直接以SiO2为原料成功地制备了五配位、六配位有机硅化合物,并进一步合成了导电材料和高性能陶瓷[3~7].我们实验室自1995年以来,在Laine的基础上,发现如果以沙子为原料,则产率非常低,即使在超声波作用下,反应一周合成的五配位硅化合物其产率不足10%,这可能是由于沙子的晶型非常完美,在200℃下很难打破Si-O键生成配位硅,如果以无定型SiO2为原料(如白碳黑,稻壳灰等),合成的五配位硅其产率几乎为100%,而且反应时间缩短为4h.然后以高活性的五配位硅为原料制备了一系列的含硅有机物,如与环氯丙烷反应[8],不仅消除了五配位硅化合物的水解可逆性反应,中和了它的强碱性,而且把环氧基团接到了配位硅化合物上,生成了一种非常类似于液态环氧树脂的淡黄色的粘稠状液体.我们按Laine的路线,向含硅聚合物方向发展[9].本文合成的双羟基四配位硅单体是五配位硅钾化合物向含硅聚合物转化的关键,由于其结构带有两个活泼羟基,可以和二元酰氯、二元羧酸、二异氰酸酯、导氰酸酯基封端的聚醚或异氰酸酯基封端的聚酯进行缩聚反应,合成主连含硅的聚合物.  相似文献   
7.
一种多波长窄线宽环形掺铒光纤激光器   总被引:2,自引:0,他引:2  
赵东晖  郑建成 《光子学报》1998,27(5):459-461
本文提出了一种利用多个光纤光栅串接来实现环形掺铒光纤多波长,窄线宽激光器的新颖方法,并在实验中验证了这一设计的合理性,得到了稳定的双波长输出。  相似文献   
8.
A high packing density laser diode stack array is developed utilizing Al-free active region laser bars with a broad waveguide and discrete copper microchannel-cooled heatsinks. The microchannel cooling technology leads to a 10-bar laser diode stack array having the thermal resistance of 0.199 ℃/W, and enables the device to be operated under continuous-wave (CW) condition at an output power of 1200 W. The thickness of the discrete copper heatsink is only 1.5 mm, which results in a high packing density and a small bar pitch of 1.8 mm.  相似文献   
9.
本征导电聚合物涂层及界面   总被引:1,自引:0,他引:1  
本文结合我们实验研究结果及国外最近的研究进展,对在绝缘基质的表面本征导电聚合物涂层的形成、结构和性能作了扼要的分析,指出了化学反应法中通过单体向整体聚合物表层扩散聚合形成的导电膜、界面的偶联作用和电荷转移作用等几种新近证实的原理,在加速导电聚合物涂层的应用中,具有重要意义。  相似文献   
10.
弱正交异性材料残余应力测量的声弹性方法   总被引:7,自引:0,他引:7  
为了适应工程材料的残余应力无损测量的要求,本文将横波和纵波声弹性相结合,建立适用於弱正交异性材料的平面声弹性残余应力测量方法,并应用该方法及自行研制的横波换能器对焊接试件的二维残余应力进行了测试。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号