首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   11篇
  国内免费   6篇
化学   253篇
晶体学   2篇
力学   3篇
数学   50篇
物理学   36篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   15篇
  2012年   24篇
  2011年   23篇
  2010年   13篇
  2009年   6篇
  2008年   22篇
  2007年   19篇
  2006年   20篇
  2005年   17篇
  2004年   14篇
  2003年   26篇
  2002年   18篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   9篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   6篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
1.
2.
Squalene-2,3-epoxide: lanosterol cyclase was purified from rat liver in five steps as a soluble and homogeneous protein. The purified enzyme showed a single band on SDS-polyacrylamide gel electrophoresis with a molecular weight of 75 kD. In its native state it behaved as a homo-dimer. The isoelectric point of 5.5 and the apparent Km value for (3S)-squalene-epoxide of 55 microM were estimated for the cyclase.  相似文献   
3.
Broussonetines are glycosidase-inhibitory alkaloids obtained from Broussonetia kazinoki. Feeding experiments using [1-13C]glucose and 13C-NMR spectroscopic studies showed that broussonetines are biosynthesized through routes similar to those of sphingosine and phytosphingosine.  相似文献   
4.
In a rubidium manganese hexacyanoferrate, RbMn[Fe(CN)(6)], the magnetic susceptibility (chi(M)) decreased at 225 K (=T(1/2)decreasing) and abruptly increased at 300 K (=T(1/2)increasing) in the cooling and warming processes, respectively. X-ray photoelectron spectroscopy and infrared spectroscopy indicated that the high-temperature (HT) and low-temperature (LT) phases were composed of Mn(II)-NC-Fe(III) and Mn(III)-NC-Fe(II), respectively. A structural change from cubic (F43m, a = 10.533 A) to tetragonal (I4m2, a = b = 7.090 A, c = 10.520 A) accompanied the phase transition, and, on the basis of these results, the HT and LT phases were assigned to Mn(II)(t(2g)(3)e(g)(2), (6)A(1g); S = (5)/(2))-NC-Fe(III) (t(2g)(5), (2)T(2g); S = (1)/(2)) and Mn(III)(e(g)(2)b(2g)(1)a(1g)(1), (5)B(1g); S = 2)-NC-Fe(II) (b(2g)(2)e(g)(4), (1)A(1g); S = 0), respectively. This phenomenon is caused by a metal-to-metal charge transfer from Mn(II) to Fe(III) and a Jahn-Teller distortion of the produced Mn(III) ion. The reaction mechanism is discussed, considering the entropy difference between the HT and LT phases.  相似文献   
5.
Tabata M  Nishimoto J  Kusano T 《Talanta》1998,46(4):703-709
A water-soluble porphyrin, (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin; H(2)obtpps(4-)) was synthesized and developed for the determination of lithium ion in aqueous solution. The octabromo groups lower the basicity of the porphyrin by their electron-withdrawing effect, and enable the porphyrin to react with the lithium ion in alkaline solution to form the lithium complex along with a shift of absorption maximum: lambda max/nm (logepsilon/mol(-1) dm(3) cm(-1)) of the lithium porphyrin are 490.5 nm (5.31) and 734 nm (4.36). Sodium and potassium ions did not react with the porphyrin. The equilibrium constant for the reaction Li(+)+Hobtpps(5-)right harpoon over left harpoon[Li(obtpps)](5-)+H(+) was found to be 10(-8.80) and the conditional formation constant of the [Li(obtpps)](5-) at pH 13 is 10(4.21). The above results were applied to the determination of lithium ion in aqueous solution. The interference from transition and heavy metal ions was masked by using N,N'-1,2-ethanediylbis[N(carboxylmethy)glycinato]magnesium(II) ([Mg(edta)](2-)) solution. Absorbance at 490 nm was measured against a blank solution. A calibration graph was linear over the range of 0.007-0.7 mug cm(-3) (1x10(-6)-1x10(-4) mol dm(-3)) of lithium(I) with a correlation factor of 0.967. Lithium ion less than ppm level was determined spectrophtometrically in aqueous solution. The proposed method was applied to the determination of lithium in human serum and sea water samples.  相似文献   
6.
Racemization of the C-terminal amino acid (Ala) has been studied in various solvents during coupling between 4-methoxybenzyloxycarbonyl (Z(OMe))-Gly-L-Ala-OH and phenylalanine benzyl ester (H-Phe-OBzl) with 4-(4,6-dimethoxy-1,3,5-thiazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). The reaction occurred without substantial racemization in AcOEt, tetrahydrofuran (THF), N,N-dimethylformamide (DMF), CH3CN, and 2-PrOH, while a slight racemization was observed in dimethyl sulfoxide (DMSO), EtOH, and MeOH. The extent of racemization may correlate with the polarity of the solvents.  相似文献   
7.
Until now, there has been little work covering all of the main native adrenal-cortical steroids in blood. We therefore established a method for the simultaneous quantitative measurement of 14 native adrenal-cortical steroids, which involves capillary column gas chromatography-mass spectrometry (GC--MS). Serum steroids were purified from serum with the Extrelut mini-column and then converted into stable derivatives for GC-MS by a combination of boronic cyclization and trimethylsilyl and methyloxime derivatization. The sensitivities (with a signal-to-noise ratio greater than or equal to 7) of our GC-MS method ranged from 0.1 to 1.0 ng/ml of serum, and the coefficients of variation of intra- and inter-assays were less than 19% for each steroid. Our newly devised method involving a capillary column GC-MS system has been proven to be a simple and suitable method for a diagnosis requiring simultaneous detection of many native adrenal steroids in clinical practice. The analysis time is only 4 h.  相似文献   
8.
Methane is shown to react with ethene over In-loaded ZSM-5 to higher hydrocarbons such as propene and toluene at around 673 K. Such methane conversion is not catalyzed by proton-exchanged ZSM-5 (H-ZSM-5) under the same conditions, only C2H4 being converted to higher hydrocarbons. By using 13C-labeled methane (13CH4) as a reactant, the reaction paths for the formation of propene, benzene and toluene were examined. 13C-labeled propene (13CC2H6) is formed by the reaction of 13CH4 with C2H4. The lack of 13C-labeled benzene revealed that propene is not transformed to benzene, which instead originates entirely from C2H4. The 13C atom is inserted both into the methyl group and benzene ring in the toluene formed. This indicates that toluene is formed by two reaction paths; the reaction of 13CC2H6 with butenes formed by the dimerization of C2H4 and the reaction of benzene with 13CH4. The existence of the latter path was proved by the direct reaction of 13CH4 with benzene. The reaction of methane with benzene was also carried out in a continuous flow system over In-loaded ZSM-5. The reaction afforded 7.6% and 0.9% yields of toluene and xylenes, respectively, at 623 K.  相似文献   
9.
Function of the Reaction Center of Green Sulfur Bacteria   总被引:1,自引:0,他引:1  
The reaction center (RC) of green sulfur bacteria belongs to the Fe-S type RC, as do the photosystem I of oxygenic photosynthetic organisms and the RC of heliobacteria. The core parts of the green sulfur bacterial and the heliobacterial RC are assumed to be homodimeric, in contrast to those of purple bacteria, photosystem I and photosystem II. This paper describes recent advances in the study of the function of the green sulfur bacterial RC.  相似文献   
10.
The electronic and spin states of a series of Co-Fe Prussian blue analogues containing Na(+) ion in the lattice, Na(x)()Co(y)()Fe(CN)(6) x zH(2)O, strongly depended on the atomic composition ratio of Co to Fe (Co/Fe) and temperature. Compounds of Co/Fe = 1.5 and 1.15 consisted mostly of the Fe(III)(t(2g)(5)e(g)(0), LS, S = 1/2)-CN-Co(II)(t(2g)(5)e(g)(2), HS, S = 3/2) site and the Fe(II)(t(2g)(6)e(g)(0), LS, S = 0)-CN-Co(III)(t(2g)(6)e(g)(0), LS, S = 0) site, respectively, over the entire temperature region from 5 to 350 K. Conversely, compounds of Co/Fe = 1.37, 1.32, and 1.26 showed a change in their electronic and spin states depending on the temperature. These compounds consisted mainly of the Fe(III)-CN-Co(II) site (HT phase) around room temperature but turned to the state consisting mainly of the Fe(II)-CN-Co(III) site (LT phase) at low temperatures. This charge-transfer-induced spin transition (CTIST) phenomenon occurred reversibly with a large thermal hysteresis of about 40 K. The CTIST temperature (T(1/2) = (T(1/2) descending + T(1/2) ascending)/2) increased from 200 to 280 K with decreasing Co/Fe from 1.37 to 1.26. Furthermore, by light illumination at 5 K, the LT phase of compounds of Co/Fe = 1.37, 1.32, and 1.26 was converted to the HT phase, and the relaxation temperature from this photoproduced HT phase also strongly depended on the Co/Fe ratio; 145 K for Co/Fe = 1.37, 125 K for Co/Fe = 1.32, and 110 K for Co/Fe = 1.26. All these phenomena are explained by a simple model using potential energy curves of the LT and HT phases. The energy difference of two phases is determined by the ligand field strength around Co(II) ions, which can be controlled by Co/Fe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号