首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2022年   1篇
  2021年   1篇
  2006年   1篇
  1996年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
We have developed a high-throughput, two-dimensional-mapping (isoelectric point [pI], mass-to-charge ratio [m/z]) method by combining a capillary isoelectric focusing chip sealed with removable resin tape and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. Sample proteins are separated in a meandering channel on the chip and immediately frozen. The tape is then removed and the proteins are freeze-dried. The freeze-drying maintains the separation state of the proteins and prevents movement of the sample solution, which can reduce pI resolution. A matrix solution is then applied and mass spectrometry is carried out by laser irradiation. The whole process takes less than 70 min, more than 10 times faster than with two-dimensional, polyacrylamide gel electrophoresis.  相似文献   
2.
Studies on Ln[Co(CN)(6)].nH(2)O (Ln = lanthanoid ions; n = 5, 4) by means of thermal analysis, Raman spectroscopy, and X-ray crystallography were carried out, in order to establish the boundary structures in the series. From the thermal analyses, it was confirmed that the complexes include Ln'[Co(CN)(6)].5H(2)O (Ln' = La to Nd) or Ln"[Co(CN)(6)].4H(2)O (Ln = Sm to Lu). Raman spectra of the complexes suggested a different classification. The complexes having five H(2)O molecules displayed two single bands associated with nu(C-N) at around 2170 cm(-1). The complexes having four H(2)O molecules showed two distinct sets of bands of nu(C-N): one was a singlet, and the other was split. Nevertheless, the complex with Nd, which has five H(2)O molecules, exhibited single and split bands. This implies that the symmetry around Nd is lower than that of other complexes having five H(2)O molecules. According to the X-ray crystal analysis, the Pr complex is Pr[Co(CN)(6)].5H(2)O, hexagonal, P6(3)/m, with a = 7.473(1) ?, c = 14.212(1) ?, and Z = 2. On the other hand, the Nd complex is Nd[Co(CN)(6)].5H(2)O, orthorhombic, C222(1), with a = 7.458(4) ?, b = 12.918(3) ?, c = 14.172(2) ?, and Z = 4. Although the Nd complex has five H(2)O molecules, the crystals are orthorhombic and belong to the space group C222(1). Therefore, the structure of Nd[Co(CN)(6)].5H(2)O is regarded as the boundary structure: one of the coordinated water molecules is disordered, although the structure is essentially the same as that of Pr[Co(CN)(6)].5H(2)O. As Pr in Pr[Co(CN)(6)].5H(2)O changes into Nd, the symmetry around the metal atom is lowered and thus the bands associated with nu(CN) in Nd[Co(CN)(6)].5H(2)O and Sm[Co(CN)(6)].4H(2)O outnumber those of Pr[Co(CN)(6)].5H(2)O. The 5H(2)O complex with Nd loses one water molecule by thermal dissociation and changes into the more stable 4H(2)O complex, whose crystals are orthorhombic and belong to the space group Cmcm. Pr[Co(CN)(6)].5H(2)O also changes into the 4H(2)O complex, orthorhombic and Cmcm, when it dehydrates.  相似文献   
3.
Because supramolecular polymerization of emissive π-conjugated molecules depends strongly on π–π stacking interaction, the formation of well-defined one-dimensional nanostructures often results in a decrease or only a small increase of emission efficiency. This is also true for our barbiturate-based supramolecular polymers wherein hydrogen-bonded rosettes of barbiturates stack quasi-one-dimensionally through π–π stacking interaction. Herein we report supramolecular polymerization-induced emission of two regioisomeric 2,3-diphenylthiophene derivatives functionalized with barbituric acid and tri(dodecyloxy)benzyl wedge units. In CHCl3, both compounds are molecularly dissolved and accordingly poorly emissive due to a torsion-induced non-radiative decay. In methylcyclohexane-rich conditions, these barbiturates self-assemble to form crystalline nanofibers and exhibit strongly enhanced emission through supramolecular polymerization driven by hydrogen-bonding. Our structural analysis suggests that the barbiturates form a tape-like hydrogen-bonding motif, which is rationalized by considering that the twisted geometries of 2,3-diphenylthiophene cores prevend the competing rosettes from stacking into columnar supramolecular polymers. We also found that a small difference in the molecular polarity originating from the substitutional position of the thiophene core influences interchain association of the supramolecular polymers, affording different luminescent soft materials, gel and nanosheet.

Two barbiturate dyes with regioisomeric thiophene-cored twisted π-systems show strongly enhanced emission through supramolecular polymerization. The supramolecular polymers thus formed exhibit distinct emission colors and degree of agglomeration.  相似文献   
4.
Ozeki  Genki  Tanaka  Yasunori  Sugiyama  Y  Nakano  Y  Ishijima  T  Uesugi  Y  Yukimoto  T  Kawaura  H 《Plasma Chemistry and Plasma Processing》2021,41(1):85-108

In this paper, numerical calculations were made for Ar loop-type inductively coupled thermal plasma (loop-ICTP). The loop-ICTP was developed originally by the authors’ group for rapid surface modification of large areas. Loop-ICTP is sustained with a unique three-dimensional (3D) configuration inside a circular loop quartz tube and on the substrate. A 3D and two-temperature thermofluid thermal plasma model was adopted for this calculation. Mass, momentum, and energy conservation equations were solved using a Maxwell equation for vector potential, an electron energy transport equation, and Saha’s equation in the 3D space. Results indicate that Ar loop-ICTP can be sustained and formed in the loop tube and also on the substrate. Moreover, the heavy particle temperatures reaches 1800–2000 K, whereas the electron temperature is about 10,000 K. Loop size effects on the gas temperature and gas flow field were also investigated using the developed model. Results show that adoption of a larger loop tube can be expected to improve the plasma uniformity on the substrate when applied to rapid surface modification.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号