首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Today, colon cancer is the leading cause of cancer death. In Thailand, colon cancer is the third most common cancer in men and the second in women. Currently, the treatments for colon cancer include surgery, chemotherapy, radiation therapy, immunotherapy, hormone therapy, targeted drug therapy, and stem cell therapy. However, some treatments have side effects for cancer patients, causing unwanted symptoms. In addition, targeted therapy comes with a high cost for patients. Therefore, bioactive compounds might be a good choice for colon cancer treatment. In this study, we investigated the effect of artonin E on apoptosis induction in colon cancer LoVo and HCT116 cells. The concentration ranges of artonin E at 3, 5, 10, and 30 µg/mL in LoVo cells and 1, 1.5, 2, and 3 µg/mL in HCT116 cells were examined. The results implied that artonin E decreased cell viability and increased apoptotic cells in a dose-dependent manner. In addition, artonin E stimulated mitochondrial membrane potential (ΔΨm) changes associated with apoptosis by increasing the sub-G1 population analyzed by flow cytometry. Western blotting showed that artonin E increased the proapoptotic protein, Bax, and decreased anti-apoptotic proteins’ (Bcl-2 and Bcl-x) expression. Moreover, artonin E also increased cleaved caspase-7 and cleaved-PARP expression in both LoVo and HCT116 cells. Interestingly, artonin E induced apoptosis through p-ERK1/2, p-p38/p38, and p-c-Jun expression in both cells. Our results suggested that artonin E induced apoptosis via caspase activation associated with the MAPKs signaling pathway. Therefore, artonin E might be used as a potential anticancer drug for colon cancer in the future.  相似文献   
2.
Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3′-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号