首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   15篇
  国内免费   2篇
化学   162篇
晶体学   4篇
数学   6篇
物理学   24篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   1篇
  2016年   14篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   20篇
  2011年   19篇
  2010年   7篇
  2009年   13篇
  2008年   14篇
  2007年   12篇
  2006年   13篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  1999年   1篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有196条查询结果,搜索用时 31 毫秒
1.
A simple and rapid analytical method for the detection of trifloxystrobin, trifloxystrobin acid and tebuconazole in soil, brown rice, paddy plants and rice hulls was established and validated by liquid chromatography with tandem mass spectrometry. Acceptable linearity (R2 > 0.99), accuracy (average recoveries of 74.3–108.5%) and precision (intra- and inter-day relative standard deviations of 0.9–8.8%) were obtained using the developed determination approach. In the field trial, the half-lives of trifloxystrobin and tebuconazole in paddy plants were 5.7–8.3 days in three locations throughout China, and the terminal residue concentrations of trifloxystrobin and tebuconazole were <100 and 500 μg/kg (maximum residue limits set by China), respectively, at harvest, which indicated that, based on the recommended application procedure, trifloxystrobin and tebuconazole are safe for use on rice. The risk assessment results demonstrated that, owing to risk quotient values of both fungicides being <100%, the potential risk of trifloxystrobin and tebuconazole on rice was acceptable for Chinese consumers. These data could provide supporting information for the proper use and safety evaluation of trifloxystrobin and tebuconazole in rice.  相似文献   
2.
Preparation and properties of the salts of the series MVO2F4, where M = NH, Na+, K+, 1/2 Ni2+, and 1/3 [Co(NH3)6]3+ are described. Molecular conductivity of Na3VO2F4 at different dilutions indicates that Na3VO2F4 dissociates into 3 Na+ and VOaF ions. Ion exchange study of (NH4)3VO2F4 solution through cation exchange resin (H+ form) suggests that the corresponding acid decomposes partly to vanadium pentoxide. Reaction between (NH4)3VO2F4 with BaCl2 and AgNO3 solutions shows the formation of BaVO2F3 and AgVO3 respectively. Thermogravimetric study of (NH4)3VO2F4 shows the formation of impure vanadium pentoxide as the ultimate product on heating up to 450°C. X-ray powder diffraction data are given for (NH4)3VO2F4 and Na3VO2F4.  相似文献   
3.
The microwave spectrum of trifluoroethylene F2C=CHF is reported, and a number of ground state and vibrationally excited state lines are assigned. The ground state rotational constants are: 10665.31, 3872.36, 2837.97 MHz. The dipole components are μa = 0.075 D, μb = 1.30 D, and μtotal = 1.30 D. Calculations of the inertia defect of the ground and excited states indicate that the equilibrium configuration is planar.  相似文献   
4.
This study describes the development and use of a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with gas chromatography with mass spectrometry to determine 29 pesticide residues in green, red and dehydrated red peppers. Pesticides were extracted with acetonitrile (1% acetic acid), partitioned with sodium chloride and purified with primary secondary amino and octadecyl silane in acetone. The QuEChERS extraction conditions were optimized, and the matrix effects that might influence recoveries were evaluated and minimized using matrix‐matched calibration curves. Under the optimized conditions, the calibration curves for 29 pesticides showed good linearity in the concentration range of 0.1–10 μg/mL with determination coefficient R2 > 0.998. The limits of quantification of the 29 pesticides were 0.006–0.06 mg/kg for green pepper, 0.005–0.039 mg/kg for red pepper and 0.014–0.25 mg/kg for dehydrated red pepper. These values are below the suggested regulatory maximum residue limits. The mean recoveries ranged between 70.1 and 110%, and the relative standard deviations were <13%. The developed method was successfully applied to commercial samples. Some samples were found to contain the 29 pesticides with levels below the legal limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Mesoporous nanoparticles composed of γ‐Al2O3 cores and α‐Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ‐Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide‐angle XRD, energy‐dispersive X‐ray spectroscopy, and elemental mapping by ultrahigh‐resolution (UHR) TEM and X‐ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g?1 and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self‐aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse‐reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide‐angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one‐pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.  相似文献   
7.
Here we report a novel family of crystalline, supermicroporous iron(III) phosphonate nanomaterials (HFeP‐1‐3, HFeP‐1‐2, and HFeP‐1‐4) with different FeIII‐to‐organophosphonate ligand mole ratios. The materials were synthesized by using a hydrothermal reaction between benzene‐1,3,5‐triphosphonic acid and iron(III) chloride under acidic conditions (pH≈4.0). Powder X‐ray diffraction, N2 sorption, transmission and scanning electron microscopy (TEM and SEM) image analysis, thermogravimetric and differential thermal analysis (TGA‐DTA), and FTIR spectroscopic tools were used to characterize the materials. The triclinic crystal phase [P$\bar 1$ (2) space group] of the hybrid iron phosphonate was established by a Rietveld refinement of the PXRD analysis of HFeP‐1‐3 by using the MAUD program. The unit cell parameters are a=8.749(1), b=8.578(1), c=17.725(3) Å; α=104.47(3), β=97.64(1), γ=113.56(3)°; and V=1013.41 Å3. With these crystal parameters, we proposed an 24‐membered‐ring open framework structure for HFeP‐1. Compound HFeP‐1‐3, with an starting Fe/ligand molar ratio of 3.0, shows the highest Brunauer–Emmett–Telller (BET) surface area of 556 m2g?1 and uniform supermicropores of approximately 1.1 nm. The acidic surface of the porous iron(III) phosphonate nanoparticles was used in a highly efficient and recyclable catalytic transesterification reaction for the synthesis of biofuels under mild reaction conditions.  相似文献   
8.
Journal of Radioanalytical and Nuclear Chemistry - Efficient and selective extraction of 137Cs and 90Sr from high level liquid waste (HLLW) is of utmost importance in the back end nuclear fuel...  相似文献   
9.
Structurally thermostable mesoporous anatase TiO2 (m‐TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores‐directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high‐angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X‐ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high‐temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye‐sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m‐TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25–m‐TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56 %) in the P25–m‐TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60 %) of the device, compared to DSSCs with a monolayer of P25 as the electrode.  相似文献   
10.
Lead halide hybrid perovskites have received massive research attention because of their unique inherent photophysical properties that driven them for potential application in the fields of photovoltaics, light-emitting devices, lasing, X-ray detector, and so on. Perovskite single crystals and nanocrystals are generally synthesized via various low-cost solution-processed techniques. The emergence of simple growth approaches of perovskite structures enable to fabricate low-cost and highly efficient devices. However, toxicity of Pb atoms and instability of perovskite structures obstruct further commercialization of these technologies. Recent efforts have been shifted to discover novel, eco-friendly, and stable lead-free metal halide perovskite (LFHP) materials and exploring their different growth processes for various device applications. This review aims to provide an up-to-date analysis of recent progress report on LFHPs and will mainly focus on their growth processes in the single crystalline and nanocrystalline forms. This review also tries to understand how the perovskite crystal structure impacts on their fundamental properties. In addition, we discuss the current progress in various field of applications and their future aspects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号