首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   15篇
化学   200篇
晶体学   2篇
力学   1篇
数学   10篇
物理学   26篇
  2022年   5篇
  2021年   4篇
  2020年   6篇
  2019年   10篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   10篇
  2013年   8篇
  2012年   16篇
  2011年   16篇
  2010年   11篇
  2009年   6篇
  2008年   21篇
  2007年   14篇
  2006年   14篇
  2005年   8篇
  2004年   11篇
  2003年   10篇
  2002年   11篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1977年   6篇
  1976年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有239条查询结果,搜索用时 453 毫秒
1.
A two‐stage co‐oligomerization of the oligomers initially formed from an equimolar mixture of isophthalic acid (IPA) and terephthalic acid (TPA) and 2,2‐bis(4‐hydroxyphenyl)propane (BPA, 50 mol %) with bisphenols (BPs, 20 mol %) was carried out using a tosyl chloride/dimethylformamide/pyridine condensing agent. The distributions of the resulting oligomers (nx‐mers), which were quenched with methanol, were determined by a combination of gel permeation chromatography (GPC) and NMR. These distributions (presented by molar percentage) were conveniently calculated with the equation nx (mol %) = nx (% mol by GPC) × n0 (mol % by NMR)/n0 (% mol by GPC), where nx (% mol) = nx (wt % by GPC)/its molecular weight. The results showed the distributions of the preformed IPA/TPA‐BPA oligomers to be in fairly good accord with those obtained directly from GPC and to be supported by the NMR results. The calculation was applied to the co‐oligomers prepared up to a reaction of 0.7, at which there was an increase in the number of higher oligomers indivisible by GPC and the distributions could no longer be determined by molar percentage. The calculated distributions are discussed in relation to the results of copolycondensation. The sequence distributions in the resulting co‐oligomers, which were also examined by NMR, are compared with those in the copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 44–51, 2004  相似文献   
2.
Evaporative deposition at oblique incidence is shown to enhance the magnetic anisotropy of an Fe20Ni80 magnetic film and induce magnetic anisotropy in an overlying, strongly isotropic Fe70Co30 film. This deposition method for the formation of an underlayer of several lattice parameters in thickness and semi-hard overlayer of a few thousands Angstroms in thickness achieves a significant change in the magnetization process and strong suppression of the coercive forces of Fe70Co30 in the hard magnetization direction. Soft magnetization of the Fe70Co30 overlayer is not achieved when one of the layers is deposited at oblique incidence. It is anticipated that shape magnetic anisotropy is responsible in part for the magnetic anisotropy induced in both in Fe20Ni80 under- and Fe70Co30 overlayer by oblique incidence evaporation.  相似文献   
3.
Microwave-promoted Suzuki-Miyaura coupling reaction of aryl halides attached to a cycloalkane-soluble platform was accomplished in a cycloalkane-based thermomorphic biphasic system. Following irradiation and subsequent cooling, the monophasic reaction mixture immediately formed a biphasic solution to allow facile workup and separation of the product.  相似文献   
4.
5.
New five seven-membered vibsane-type diterpenes named 5-epi-vibsanin C, 5-epi-vibsanin H, 5-epi-vibsanin K, 18-O-methyl-5-epi-vibsanin K and 5-epi-vibsanin E have been isolated from the leaves of Viburnum awabuki (Caplifoliaceae). Their structures have been elucidated by analyses of spectroscopic data and comparison of their spectral data with those of the previously known seven-membered vibsane-type diterpenes. The occurrence of these seven-membered vibsane-type diterpenes with a cis relationship on the C-5 and C-10 positions in nature have been predicted by conformational analysis of vibsanin B, an eleven-membered vibsane-type diterpene. Vibsanin C, 5-epi-vibsanin C and 5-epi-vibsanin H exhibited moderate cytotoxic activities on KB cells.  相似文献   
6.
A series of the octapalladium chains supported by meso-Ph2PCH2P(Ph)CH2P(Ph)CH2PPh2 (meso-dpmppm) ligands, [Pd8(meso-dpmppm)4(L)2](BF4)4 (L=none ( 1 ), solvents: CH3CN ( 2 a ), dmf ( 2 b ), dmso ( 2 c ), RN≡C: R=Xyl ( 3 a ), Mes ( 3 b ), Dip ( 3 c ), tBu ( 3 d ), Cy ( 3 e ), CH3(CH2)7 ( 3 f ), CH3(CH2)11 ( 3 g ), CH3(CH2)17 ( 3 h )) and [Pd8(meso-dpmppm)4(X)2](BF4)2 (X=Cl ( 4 a ), N3 ( 4 b ), CN ( 4 c ), SCN ( 4 d )), were synthesized by using 2 a as a stable good precursor, and characterized by spectroscopic (IR, 1H and 31P NMR, UV-vis-NIR, ESI-MS) measurements and X-ray crystallographic analyses (for 1 , 2 a , b , 3 a , b , e , f , 4 a – d ). On the basis of DFT calculations on the X-ray determined structure of 2 b ( [2b-Pd8]4+ ) and the optimized models [Pd8(meso-Ph2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8Ph8]4+ ) and [Pd8(meso-H2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8H8]4+ ), with and without empirically calculating dispersion force stabilization energy (B3LYP-D3, B3LYP), the formation energy between the two Pd4 fragments is assumed to involve mainly noncovalent interactions (ca. −70 kcal/mol) with four sets of interligand C−H/π interactions and Pd⋅⋅⋅Pd metallophilic one, while electron shared covalent interactions are almost canceled out within the Pd8 chain. All the compounds isolated are stable in solution and exhibit characteristic absorption at ∼900 nm, which is assignable to a spin allowed HOMO to LUMO transition, and shows temperature dependent intensity change with variable absorption coefficients presumably due to coupling with some thermal vibrations. The structures and electronic states of the Pd8 chains are found finely tunable by varying the terminal capping ligands. In particular, theoretical calculations elucidated that the HOMO-LUMO energy gap is systematically related to the central Pd−Pd distance (2.7319(6)–2.7575(6) Å) by two ways with neutral ligands L ( 1 , 2 , 3 ) and with anionic ligands X ( 4 ), which are reflected on the NIR absorption energy of 867–954 nm. The isocyanide terminated Pd8 complexes ( 3 ) further reacted with excess of RNC (6 eq) to afford the Pd4 complexes, [Pd4(meso-dpmppm)2(RNC)2](BF4)2 ( 13 ), and the cyclic voltammograms of 2 a (L=CH3CN), 3 , and 13 (R=Xyl, Mes, tBu, Cy) demonstrated wide range redox behaviors from 2{Pd4}4+ to 2{Pd4}0 through 2{Pd4}2+↔{Pd8}4+, {Pd8}3+, and {Pd8}2+ strings. The oxidized complexes, [Pd4(meso-dpmppm)2(RNC)3](BF4)4 ( 16 ), were characterized by X-ray analyses, and the two-electron reduced chain of [Pd8(meso-dpmppm)4](BF4)2 ( 7 ) was analyzed by spectroscopic and electrochemical techniques and DFT calculations. Reactions of 2 a with 1 equiv. of aromatic linear bisisocyanide (BI) in CH2Cl2 deposited insoluble coordination polymers, {[Pd8(meso-dpmppm)4(BI)](BF4)4}n ( 5 ), and interestingly, they were soluble in acetonitrile, 31P{1H} and 1H DOSY NMR spectra as well as SAXS curves suggesting that the coordination polymers may exist in acetonitrile as dynamically 1D self-assembled coordination polymers comprising ca. 50 units of the Pd8 rod averaged within the timescale.  相似文献   
7.
A new linear tetraphosphine containing a PNP phosphazane bridge, rac-bis[(diphenylphosphinomethyl)phenylphosphino]phenylamine (rac-dpmppan), was synthesized and utilized to support a series of Pd/Pt mixed metal tetranuclear chains, [Pd4−nPtn(μ-rac-dpmppan)2(XylNC)2](PF6)2 (XylNC=xylyl isocyanide; n=0: Pd4 ( 1 ), 1: PtPd3 ( 2 ), 2: PtPd2Pt ( 3 ), 2: Pt2Pd2 ( 4 ), 3: Pt2PdPt ( 5 )), in which the number and positions of additional Pt atoms were successfully controlled depending on the respective synthetic procedures using transformations from 1 to 3 through 2 and from 4 to 5 by redox-coupled exchange reactions. The 31P{1H} NMR and ESI mass spectra and X-ray diffraction analyses revealed almost identical tetranuclear structures, with slight contraction of metal-metal bonds according to incorporation of Pt atoms. The electronic absorption spectra of 1 – 5 exhibited characteristic bands at 635–510 nm with an energy propensity depending on the number and positions of Pt centres, which were assigned to HOMO (dσ*σσ*) to LUMO (dσ*σ*σ*) transition by theoretical calculations. The present results demonstrated that the electronic structures of Pd/Pt mixed-metal tetranuclear complexes are finely tuned as orbital-overlapping alloyed metal chains by atomically precise Pt incorporation in the Pd4 chain.  相似文献   
8.
A P-stereogenic linear tetraphosphine tetraoxide, (R,R)- or (S,S)-dpmppm(=O)4, was synthesized to prepare C2 dinuclear M(hfa)3 complexes (M=Eu, Tb, Y) as the first example of lanthanide(III) complexes with P-chiral multidentate phosphine oxides. The mononuclear M(hfa)3 complexes (M=Eu, Y) with a P-chiral diphosphine dioxide, tpdpb(=O)2, were also prepared, and comparison of their photophysical properties for the EuIII complexes revealed that significant chiral induction from the P-chiral centers arises on the achiral M(hfa)3 units through intramolecular π-π stacking constraint in the dinuclear system.  相似文献   
9.
10.
Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R] formed between various types of organic compounds M and atmospheric negative ions R- [such as O2 , HCO3 , COO(COOH), NO2 , NO3 , and NO3 (HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R] adducts were fragmented to form deprotonated analytes [M – H] and/or atmospheric ions R, whose intensities in the CID spectra were dependent on the proton affinities of the [M – H] and R fragments. Precursor ions [M + R] for which R- have higher proton affinities than [M – H] formed [M – H] as the dominant product. Furthermore, the CID of the adducts with HCO3 and NO3 -(HNO3) led to other product ions such as [M + HO] and NO3 , respectively. The fragmentation behavior of [M + R] for each R observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号