首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
A simple adsorption/desorption procedure using a mixed matrix membrane (MMM) as extraction medium is demonstrated as a new miniaturized sample pretreatment and preconcentration technique. Reversed-phase particles namely polymeric bonded octadecyl (C18) was incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a C18-MMM. Non-steroidal anti-inflammatory drugs (NSAIDs) namely diclofenac, mefenamic acid and ibuprofen present in the environmental water samples were selected as targeted model analytes. The extraction setup is simple by dipping a small piece of C18-MMM (7 mm × 7 mm) in a stirred 10 mL sample solution for analyte adsorption process. The entrapped analyte within the membrane was then desorbed into 100 μL of methanol by ultrasonication prior to high performance liquid chromatography (HPLC) analysis. Each membrane was discarded after single use to avoid any analyte carry-over effect. Several important parameters, such as effect of sample pH, salting-out effect, sample volume, extraction time, desorption solvent and desorption time were comprehensively optimized. The C18-MMM demonstrated high affinity for NSAIDs spiked in tap and river water with relative recoveries ranging from 92 to 100% and good reproducibility with relative standard deviations between 1.1 and 5.5% (n = 9). The overall results obtained were found comparable against conventional solid phase extraction (SPE) using cartridge packed with identical C18 adsorbent.  相似文献   
2.
A metallic nanofluid is a suspension of metallic nanoparticles in a base fluid. Multi-metallic nanoparticles are a combination of two or more types of metallic particles. Such multi-metallic nanoparticles were suspended in water using an ultrasonic vibrator for different total volume fractions and different ratios of metallic/metallic nanoparticles. A transient hot wire setup was built to measure the thermal conductivity of the nanofluid at different temperatures. The experimental results were in good agreement with the results in the literature. Then, the experimental results were used as input data for an adaptive neural fuzzy inference system (ANFIS) to predict the thermal conductivity of the multi-metallic nanofluid. The maximum deviation between the ANFIS results and experimental measurements was 1 %. The predicted results and the experimental data were compared with other models. The ANFIS model was found to have good ability to predict the thermal conductivity of the multi-metallic nanofluid over the range of the experimental results.  相似文献   
3.
A method is described for the determination of 90Sr in environmental samples using combination of developed in-house method, Eichrom Sr resin and Beta Counter. Strontium was efficiently, rapidly and simply separated from Ca and other interfering matrix components by Eichrom Sr resin. All the results in general showed good accuracy, high precision, reliable and in good agreement between these two measured and certified value of SRM (i.e. IAEA-375, IAEA-326, IAEA-152 and IAEA-414). As a whole, the procedure described in this work notably improves conventional methods in particular concerning the time needed, sample volume, safer and others. Thus, the introduced method was successfully performed and will be applied to actual sample for the determination of 90Sr in different environmental materials such as soil, sediments, milk, biological sample, water etc.  相似文献   
4.
Sample preparation is the backbone of any analytical procedure; it involves extraction and pre-concentration of the desired analytes; often at trace levels. The present article describes the applications of nanomaterials (carbon-based inorganic and polymeric materials) in miniaturized extraction such as solid phase micro-extraction, stir-bar sorptive extraction, liquid phase micro-extraction, and dispersive liquid phase micro-extraction in the analyses of aqueous samples. The nanoparticles used for micro-extractions are discussed on the basis of their chemical natures. The synthetic route and the preparation of nanomaterials are described along with the optimization strategies for micro-extraction. A comparison between the conventional materials and nanomaterials for micro-extraction is proposed. The key roles of the nanomaterials for the micro-extraction of different analytes such as drugs, pesticides, polycyclic aromatic hydrocarbons, proteins and peptides from aqueous samples are reported. The use of nanomaterials, combined with miniaturized micro-extraction techniques, proved to be highly promising for sample preparation of various matrices with analytes at trace levels.  相似文献   
5.
Study for distribution of Naturally Occurring Radioactive Materials (NORM) i.e. 226Ra, 228Ra and 40K in the east coast of Peninsular Malaysia Exclusive Economic Zone (EEZ) was carried out as part of the national marine environment project. Sixteen marine sediment cores from selected locations within the EEZ were collected for determination of NORM activity concentrations using high-purity germanium (HPGe) gamma spectrometer. From the measurement, the activity concentration of 226Ra, 228Ra and 40K is ranged from 16 ± 4 Bq/kg to 46 ± 6 Bq/kg (total mean 30), 28 ± 7 Bq/kg to 87 ± 11 Bq/kg (total mean 56) and 171 ± 33 Bq/kg to 690 ± 89 Bq/kg (total mean 420), dry wt., respectively. The activity concentrations of radionuclides in most of the core were quite uniform suggesting that there were thorough vertical mixed of sediment throughout the core. The results obtained were also in good agreement with those previous reported from other countries in the region and therefore can be used to enhance present radioactivity database. The calculated external hazard values were ranged from 0.25 to 0.51 with the mean of 0.38 (less than unity) showed little risk of external hazard to the workers handling the sediments and it was likely low level of the mainland natural gamma-radiation in the east coast of Peninsular Malaysia.  相似文献   
6.
A rapid, simple, and efficient method using ultrasound-assisted emulsification microextraction combined with dispersive micro-solid phase extraction (USAE-D-µ-SPE) was developed for detection and quantification of three azole antifungals in milk samples by high-performance liquid chromatography diode array detector. In this study, mesoporous carbon, COU-2, was used as sorbent in USAE-D-µ-SPE for the extraction and preconcentration of analytes. Several important experimental parameters, including type of deproteinized solvents, desorption time, type of extraction solvents, volume of extraction solvent, extraction time, emulsification time, sample pH, salt addition, and mass of COU-2 sorbent, were optimized using spiked milk samples. Under the optimum extraction and detection conditions, three azole antifungals, namely ketoconazole, clotrimazole, and miconazole, were determined within 20 min, with good linearity of matrix-matched calibration in the range of 0.5–5000.0 µg L?1 with coefficient of determination, r 2 ≥ 0.9943. The method showed limits of detection and limits of quantification of all analytes in the range of 0.15–3.0 and 0.5–10.0 µg L?1, respectively. Good repeatability with RSDs <15% (n = 3) and satisfactory relative recoveries (83.3–111.1%) were obtained for spiked azole antifungal drugs in milk. The results reveal that the developed USAE-D-µ-SPE method was a simple, rapid, efficient, environmentally friendly, and practicable method for the determination of azole antifungals in milk samples.  相似文献   
7.
8.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   
9.
A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux at the wall has been built to study the effect of Reynolds number on heat transfer and pressure loss. The investigation was performed for metallic oxide and multi-oxide nanoparticles suspended in water. The thermal conductivity and dynamic viscosity were measured for a range of temperature (10–60 °C) and volume fraction of multi-oxide nanofluid. Comparison of the thermal conductivity for monocular oxide and multi-oxide nanofluids reveals a new way to control the enhancement in nanofluid conductivity. The numerical results obtained were compared with existing well-established correlations. The predictions of the Nusselt number for nanofluids are in agreement with the Shah correlation, and the deviation in the results is less than 1 %. It is found that the pressure loss increases with the Reynolds number, nanoparticle density, and volume fraction for multi-oxide nanoparticles. However, the flow demonstrates enhancement in heat transfer which improves with increasing Reynolds number of the flow.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号