首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   11篇
力学   1篇
物理学   1篇
  2023年   1篇
  2022年   3篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The utility of singlet oxygen-methanol as a reagent for nuclear methoxylation of complex organic natural products is illustrated by a one pot one step photoconversion of pulvinic acid dilactone to p-methoxyvulpinic acid. The study is important from biogenetic considerations.  相似文献   
2.
Response surface methodology (RSM) was employed for optimization of medium components and cultural parameters in cost effective cane molasses based medium for attaining high yield of succinic acid. The important factors obtained by “one-variable-at-a-time-approach” (cane molasses, corn steep liquor, sodium carbonate, and inoculum density) were further optimized by RSM. The optimum values of the parameters obtained through RSM (cane molasses 12.5%, corn steep liquor 7.5%, and sodium carbonate 25 mM) led to almost double yield of succinic acid (15.2 g/l in 36 h) as against “one-variable-at-a-time-approach” (7.1 g/l in 36 h) in 500-ml anaerobic bottles containing 300-ml cane molasses based medium. Subsequently, in 10-l bioreactor succinic acid production from Escherichia coli was further improved to 26.2 g/l in 30 h under conditions optimized through RSM. This fermentation-derived succinic acid will definitely help in replacing existing environmentally hazardous and cost-intensive chemical methods for the production of succinic acid.  相似文献   
3.
Herein, we report a straightforward synthesis of valuable α-hydroxycarboxylic acid molecules via an acceptorless dehydrogenative coupling of ethylene glycol and primary alcohols. A bench-stable manganese complex catalyzed the reaction, which is scalable, with the product being isolated with high yields and selectivities under mild conditions. The protocol is environmentally benign, producing water and hydrogen gas as the only byproducts. Methanol can also be used as a C1 source for producing the platform molecule lactic acid, with a high turnover of >104. The methodology was also used to functionalize alcohols derived from natural products and fatty acids. Furthermore, it was applied for synthesizing α-amino acid, α-thiocarboxylic acid, and several drugs and bioactive molecules, including endogenous metabolites, Danshensu, Enalapril, Lisinopril, and Rosmarinic acid. Preliminary mechanistic studies were performed to shed light on the mechanism involved in the reaction.  相似文献   
4.
The full wavevector and frequency dependent complex dielectric function for two component classical and quantum rare hot plasmas have been derived. The real part of dielectric function is obtained in the form of a series. Difference between quantum and classical real and imaginary parts of dielectric function have been brought out by making explicit calculations. The quantum nature of the plasma brings about significant changes in both parts depending upon the magnitude of quantum parameter,R (= 8.93(λth)/λ). Expressions for the dynamic structure factors for both two component classical and quantum plasma have been evaluated for different values of the mass of the positive componentm +, temperature T+ and wavevector k. It is found that the plasma exhibits well defined collective modes for certain values of |k| accompanied by varying disorder which depends upon the values of m+ as well as on |k| and T+. For the quantum case the collective modes are less well defined as compared to the corresponding classical case, thus proving that quantum nature introduces inherent disorder in the system. But for both the cases, increase in temperature destroys collective modes. Another feature is the appearance of a hump near Ω = 0 which becomes smaller and vanishes as the quantum parameter is decreased. Instability of plasma modes in the presence of constant electric field has also been worked out for the quantum case.  相似文献   
5.
Novel trinuclear complexes C23H31N6O6CuSn2Cl5 [1], C23H31N6O6CuZr2Cl5 [2], C23H31N6O6ZnSn2Cl5 [3], and C23H31N6O6ZnZr2Cl5 [4] were synthesized and characterized by spectroscopic (IR, 1H, 13C, 2D COSY, and 119Sn NMR, EPR, UV-vis, ESI-MS) and analytical methods. In complexes 1-4, the geometry of copper and zinc metal ions were described as square-based pyramidal with l-tryptophan coordinated to copper/zinc via carboxylate group while Sn/Zr was present in the hexacoordinate environment. The interaction of 1 and 2 with calf thymus DNA in Tris buffer was studied by electronic absorption titration, luminescence titration, cyclic voltammetry, circular dichroism, and viscometric measurements. The emission quenching of these complexes by [Fe(CN)6]4- depressed greatly when bound to DNA. Observed changes in the circular dichoric spectra of DNA in presence of 1 and 2 support the strong binding of complexes with DNA. The relative specific viscosity of DNA bound to 1 and 2 decreased, indicating that the complexes bind to DNA via covalent binding. The results reveal that the extent of DNA binding of 1 was greater than that of 2. To evaluate the mechanistic pathway of DNA inhibition, counting experiments and MTT assay were employed to assess the induction of apoptosis by 1. Western blot analysis of whole cell lysates and mitochondrial fractions with Bcl-2 and p-53 family proteins and caspase-3 colorimetry assay were also carried out on a human neuroblastoma cell line SY5Y.  相似文献   
6.
Phenol and its derivatives are known to be toxic causing adverse impact on human health and environment. Adsorption utilising waste materials is a cost effective method for abatement of such pollutants. The present study thus aims to remove the phenol from aqueous solutions using chitosan/calcined eggshell adsorbent. Taguchi L27 Orthogonal array design methodology was used for the optimization of preparation variables. The statistical results obtained using ANOVA and S/N ratios showed that adsorption of phenol was significantly influenced by activation temperature (54.90%) and activation time (43.70%) whereas the mix ratio had fairly low impact on the output response (1.14%). The confirmation run in optimum preparation conditions of temperature (800 ?°C), time (60mins) and mix ratio (1:1) resulted in maximum adsorption capacity (10.82 ?mg/g) which confirmed that the optimization done by Taguchi model was valid and reliable. The characterization of adsorbent prepared under optimum conditions were done using scanning electron microscopy, X-ray diffraction (XRD), and the Fourier transform Infrared spectroscopy (FTIR). Adsorption and kinetic studies manifested that the adsorption phenomenon onto prepared adsorbent is illustrated well by linear Langmuir isotherm and pseudo second order kinetics.  相似文献   
7.
The dearomative cycloaddition reaction serves as a blueprint for creating sp3-rich three-dimensional molecular topology from flat-aromatic compounds. However, severe reactivity and selectivity issues make this process arduous. Herein, we describe visible-light energy-transfer catalysis for the intermolecular dearomative [4 + 2] cycloaddition reaction of feedstock naphthalene molecules with vinyl benzenes. Tolerating a wide range of functional groups, structurally diverse 2-acyl naphthalenes and styrenes could easily be converted to a diverse range of bicyclo[2.2.2]octa-2,5-diene scaffolds in high yields and moderate endo-selectivities. The late-stage modification of the derivatives of pharmaceutical agents further demonstrated the broad potentiality of this methodology. The efficacy of the introduced methods was further highlighted by the post-synthetic diversification of the products. Furthermore, photoluminescence, electrochemical, kinetic, control experiments, and density-functional theory calculations support energy-transfer catalysis.

Constructing 3D molecular scaffolds from aromatic hydrocarbons is challenging. Herein, we report dearomative [4 + 2] cycloaddition reaction of naphthalenes via visible-light EnT catalysis which overcomes issues of unfavorable thermodynamics, low yields, and selectivity.  相似文献   
8.
Quantum sum rules impose limits on the hyperpolarizability, beta. A survey of the largest second-order molecular susceptibilities finds what appears to be a universal gap between the experimental results and the fundamental limits. In this work, we use theory, linear spectroscopy, Raman spectroscopy, and measured values of beta (using hyper-Rayleigh scattering and Stark Spectroscopy) to show that this gap is due to an unfavorable arrangement of excited state energies. The question of whether this result is a universal property of a quantum system or a matter of present paradigms for making molecules is discussed.  相似文献   
9.
Steel industries are a major contributor to aerosols in steel cities like Rourkela.We designed an air quality sampling program to characterize total suspended particulate(TSP) aerosol in urban areas of Rourkela and to identify their steel-related and other sources.Monitoring was carried out over 8 h,twice per week from January 2011 to December 2012.Metallic species of TSP aerosols were analyzed using an atomic absorption spectrophotometer;ionic species using the IS 3025 method;and carbonaceous species using a total organic carbon analyzer.Enrichment factor and Spearman’s rank correlation analysis were carried out on compositional data.Significant seasonal variations were observed for TSP with totals in summer>spring>winter>monsoon.Low concentrations during monsoon reflected wet scavenging,while high concentrations during summer were related to wind turbulence and low humidity.The chemical mass balance model CMB8.2 was applied to apportion sources.Particles related to steel production,road dust,and soil were dominant in all seasons.A fertilizer plant was found to contribute particles in summer and monsoon.Wood combustion,diesel exhaust,and liquefied petroleum gas contributed significantly in spring and winter.While diesel exhaust,industrial manufacturing,solid waste burning,cement kilns,and construction were found to contribute to TSP at various times throughout the year.  相似文献   
10.
An indigenous Bacillus subtilis strain isolated from soil was found to be a potent milk-clotting protease (mcp) producer. Production optimized using response surface methodology (RSM) yielded 1,190 U/ml of enzyme in medium containing 6% fructose, 1% casein, 0.3% NH4NO3, 10 mM CaCl2, pH 6.0 and inoculated with 3% inoculum and incubated at 250 rpm for 72 h. Solid-state fermentation resulted in 1,080 and 952.3 U/gds of milk-clotting protease using soybean meal and rice bran, respectively, with higher proteolytic values of 18.97 and 9.1 IU/gds. Production in a biphasic system using an overlay of RSM-optimized medium on solid layer of 6% fructose and 1% casein with 1.5% agar resulted in significant enzyme production. Maximum mcp was obtained using a biphasic system where solid: liquid ratio of 3.0 resulted in a final yield of 1,276.65 U/ml with a yield index of 1.80 as compared to static liquid culture. However, significant increase or difference was noted as compared to yield obtained after RSM. This is the first report on the use of RSM for production of mcp from a bacterial species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号