首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
化学   5篇
物理学   2篇
  2023年   1篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   
2.
3.
Elucidating the reaction mechanism in heterogeneous catalysis is critically important for catalyst development, yet remains challenging because of the often unclear nature of the active sites. Using a molecularly defined copper single-atom catalyst supported by a UiO-66 metal–organic framework (Cu/UiO-66) allows a detailed mechanistic elucidation of the CO oxidation reaction. Based on a combination of in situ/operando spectroscopies, kinetic measurements including kinetic isotope effects, and density-functional-theory-based calculations, we identified the active site, reaction intermediates, and transition states of the dominant reaction cycle as well as the changes in oxidation/spin state during reaction. The reaction involves the continuous reactive dissociation of adsorbed O2, by reaction of O2,ad with COad, leading to the formation of an O atom connecting the Cu center with a neighboring Zr4+ ion as the rate limiting step. This is removed in a second activated step.  相似文献   
4.
5.
This article reviews our recent works on dimethyl ether steam reforming (DME SR) over nanocomposite catalysts of copper-based spinel oxide and solid-acid catalyst. A series of Cu-based spinels was prepared by citric acid complexation method and their catalytic performance was studied in terms of activity, selectivity, and stability. The influence of preparation conditions, such as calcination temperature, reduction temperature, and chemical composition, and reforming conditions, such as steam-to-carbon ratio and reaction temperature, was systematically studied. Effect of type of solid-acid catalyst was also reported. Zeolite-based composites and alumina-based ones are highly active in temperature ranges of <300 °C and >300 °C, respectively. The composite of CuFe2O4 and alumina treated thermally in air at 700–800 °C exhibited excellent activity and stability in DME SR. Upon H2 reduction, phase separation of copper spinel to metallic copper nanoparticles and host oxides proceeds. The high dispersion of the Cu particles (Cu1+-rich surface of ca. 70%) on the hosts, and the strong chemical interaction between them could be observed. The H2-rich reformate (>70% H2) could be attained for longer than 800 h at 375 °C, showing the good potential for practical use in H2 and fuel cell applications. Doping Ni to CuFe2O4 significantly enhanced the stability of the catalyst, in accordance with the alloying effect. Regeneration of the degraded catalysts could be obtained by simple heat-treatment since carbon deposits were removed, and spinel structures were reconstructed.  相似文献   
6.
Copper nanoparticle/multi-walled carbon nanotube (MWCNT) hybrid material could be fabricated by microwave irradiation to a suspension of MWCNTs dispersed in copper precursor with the presence of ethylene glycol. Microscopic and spectroscopic analyses could confirm the uniform dispersion of copper oxide nanoparticles hybridized on the outer surface of MWCNTs. Reduction of Cu2+ ions to Cu2O and Cu nanoparticles was ascribed to functional groups which were generated after the precursor was irradiated by microwave. Sufficient irradiation time of 5 min or longer played an important role to induce the agglomeration of copper oxide nanoparticles on the MWCNT surface.  相似文献   
7.
Norbornene macromonomers 2 and 3 bearing 10‐ and 20‐mers of lactide were synthesized by ring‐opening polymerization of lactide using 5‐norbornene‐2, 3‐exo‐exo‐dimethanol as an initiator and DBU as a catalyst. Macromonomers 2 and 3 were copolymerized with amino acid derived norbornene monomer 1 , using the Grubbs 2nd generation ruthenium catalyst. The random and block copolymers with Mn's ranging from 28,000 to 180,000 were obtained almost quantitatively where the Mn's of the block copolymers were higher than those of the random ones. Three‐dimensional macroporous structure polymers with average pore size of 10 µm could be found in poly( 1 ) and the block co‐polymer of 1 and 2 or 1 and 3 at the high ratio of 1 . Meanwhile, poly( 2 ) and poly( 3 ) along with block and random copolymers with low ratio of 1 exhibit much larger pores in the range of 50–300 µm. The porosity increased with increase in the unit ratio of 1 . The compressive strength of the porous structure of poly( 2 ) and poly( 3 ) was improved by the copolymerization with 1 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1660–1670  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号