首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   6篇
力学   2篇
数学   2篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
The seaward slope of many breakwaters consists of thousands of interlocking units of rock or concrete comprising a massive granular system of large elements each weighing tens of tonnes. The dumped quarry materials in the core are protected by progressively coarser particulates. The outer armour layer of freely placed units is intended to both dissipate wave energy and remain structurally stable as strong flows are drawn in and out of the particulate core. Design guidance on the mass and shape of these units is based on empirical equations derived from scaled physical model tests. The main failure mode for armour layers exposed to severe storms is hydraulic instability where the armour units of concrete or rock are subjected to uplift and drag forces which can in turn lead to rocking, displacement and collisions sufficient to cause breakage of units. Recently invented armour unit designs making up such granular layered system owe much of their success to the desirable emergent properties of interlock and porosity and how these combine with individual unit structural strength and inertial mass. Fundamental understanding of the forces governing such wave-structure interaction remains poor. We use discrete element and combined finite-discrete element methods to model the granular solid skeleton of randomly packed units coupled to a CFD code which resolves the wave dynamics through an interface tracking technique. The CFD code exploits several methods including a compressive advection scheme, node movement, and general mesh optimization. We provide the engineering context and report progress towards the numerical modelling of instability in these massive granular systems.  相似文献   
4.
Temperature responsive charged block-copolymers of poly(N-isopropylacrylamide) (PNIPAM) have been used in the solid-liquid separation of alumina mineral particles from aqueous solution. The effects of temperature, polymer charge-sign and fraction of charged segment have been investigated. Batch settling and adsorption studies showed that rapid sedimentation results for suspensions with polymers of opposite charge-sign to the particle surface-charge (counterionic) at 50 °C. Cooling the suspensions after flocculation at 50 °C was found to increase the final solids volume fraction of the sediment beds formed through a mechanism related to partial desorption of polymer and the reduction of the hydrophobic attraction. Suspension stability results after dosing with polymers of similar charge-sign to the particle surface-charge (co-ionic) at both 25 and 50 °C. Increasing the amount of polymer charge increased the influence of polymer charge-sign on the adsorption and solid-liquid separation behavior. The performance of the charged block copolymers are compared to that of the random charged copolymer and neutral homopolymer PNIPAM structures.  相似文献   
5.
Multiphase inertia-dominated flow simulations, and free surface flow models in particular, continue to this day to present many challenges in terms of accuracy and computational cost to industry and research communities. Numerical wave tanks and their use for studying wave-structure interactions are a good example. Finite element method (FEM) with anisotropic meshes combined with dynamic mesh algorithms has already shown the potential to significantly reduce the number of elements and simulation time with no accuracy loss. However, mesh anisotropy can lead to mesh quality-related instabilities. This article presents a very robust FEM approach based on a control volume discretization of the pressure field for inertia dominated flows, which can overcome the typically encountered mesh quality limitations associated with extremely anisotropic elements. Highly compressive methods for the water-air interface are used here. The combination of these methods is validated with multiphase free surface flow benchmark cases, showing very good agreement with experiments even for extremely anisotropic meshes, reducing by up to two orders of magnitude the required number of elements to obtain accurate solutions.  相似文献   
6.
7.
McGovern JP  Shih WY  Shih WH 《The Analyst》2007,132(8):777-783
In this study, we have demonstrated in situ, all-electrical detection of Bacillus anthracis (BA) spores using lead magnesium niobate-lead titanate/tin (PMN-PT/Sn) piezoelectric microcantilever sensors (PEMS) fabricated from PMN-PT freestanding films and electrically insulated with methyltrimethoxysilane (MTMS) coatings on the tin surface. Antibody specific to BA spore surface antigen was immobilized on the platinum electrode of the PMN-PT layer. In phosphate-buffered saline (PBS) solution, the PMN-PT/Sn PEMS exhibited quality (Q) values ranging from 50 to 75. The detection was carried out in a closed-loop flow cell with a liquid volume of 0.8 ml and a flow rate of 1 ml min(-1). It was shown that one sensor, "PEMS-A" (500 microm long, 800 microm wide, with a 22 microm thick PMN-PT layer, a 20 microm thick tin layer and a 1 +/- 0.5 x 10(-12) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2100 +/- 200, 1100 +/- 100 and 700 +/- 100 Hz at concentrations of 20,000, 2000, and 200 spores ml(-1) or 16,000, 1600, and 160 total spores, respectively. Additionally, "PEMS-B" (350 microm long, 800 microm wide, with an 8 microm thick PMN-PT layer, a 6 microm thick tin layer and a 2 +/- 1 x 10(-13) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2400 +/- 200, 1500 +/- 200, 500 +/- 150 and 200 +/- 100 Hz at concentrations of 20,000, 2000, 100, and 45 spores ml(-1) or 16,000, 1600, 80, and 36 total spores, respectively.  相似文献   
8.
Air traffic efficiency is heavily influenced by unanticipated factors that result in capacity reduction. Of these factors, weather is the most significant cause of delays in airport and airspace operations. Considering weather-related uncertainty, air traffic flow management involves controlling air traffic through allocation of available airspace capacity to flights. The corresponding decision process results in a stochastic dynamic problem where aircraft on the ground and in the air are controlled based on the evolution of weather uncertainty. We focus on the single-sector version of the problem that is applicable to a majority of cases where a volume of airspace has reduced capacity due to convective weather. We model the decision process through stochastic integer programming formulations and computationally analyse it for tractability. We then demonstrate through actual flight schedule data that a simplistic but practically implementable approximation procedure is a generally effective solution approach for these models.  相似文献   
9.
Temperature-responsive random copolymers based on poly(N-isopropyl acrylamide) (PNIPAM) with 15 mol% of either acrylic acid or dimethylaminoethyl acrylate quaternary chloride were prepared. The effect of the charge and its sign were investigated in the solid-liquid separation of silica and alumina mineral suspensions. The results were compared to PNIPAM homopolymer of similar molecular weight. PNIPAM copolymers of the same charge as the particles (co-ionic PNIPAM) act as dispersants at both 25°C and 50°C. Flocculation occurs when counter-ionic PNIPAM facilitates selective aggregation and rapid sedimentation of minerals at both 25°C and 50°C. Adsorption and desorption studies showed that, unlike non-ionic PNIPAM, little desorption of the counter-ionic copolymers from the oxides occurred after cooling a suspension from 50°C to below the lower critical solution temperature. Thus, incorporation of counter-ionic charge into the temperature sensitive polymer PNIPAM was found to reduce the sediment bed consolidation upon cooling when compared to PNIPAM homopolymers. The lack of secondary consolidation upon cooling is attributed to attractive inter-particle forces, such as conventional polyelectrolyte flocculation mechanisms (bridging, charge neutralization or charge patch) which persist at both 25°C and 50°C when counter-ionic PNIPAM is used. On the other hand, it was possible to obtain rapid sedimentation with the counter-ionic PNIAPMs even when they were added to the suspension already at 50°C, a process which has not been possible with neutral PNIPAM homopolymers.  相似文献   
10.
Differentiation between species of similar biological structure is of critical importance in biosensing applications. Here, we report specific detection of Bacillus anthracis (BA) spores from that of close relatives, such as B. thuringiensis (BT), B. cereus (BC), and B. subtilis (BS) by varying the flow speed of the sampling liquid over the surface of a piezoelectric microcantilever sensor (PEMS). Spore binding to the anti-BA spore IgG coated PEMS surface is determined by monitoring the resonance frequency change in the sensor's impedance vs. frequency spectrum. Flow increases the resonance frequency shift at lower flow rates until the impingement force from the flow overcomes the binding strength of the antigen and decreases the resonance frequency shift at higher flow rates. We showed that the change from increasing to decreasing resonance frequency shift occurred at a lower fluid flow speed for BT, BC, and BS spores than for BA spores. This trend reduces the cross reactivity ratio of BC, BS, and BT to the anti-BA spore IgG immobilized PEMS from around 0.4 at low flow velocities to less than 0.05 at 3.8 mm s(-1). This cross reactivity ratio of 0.05 was essentially negligible considering the experimental uncertainty. The use of the same flow that is used for detection to further distinguish the specific binding (BA to anti-BA spore antibody) from nonspecific binding (BT, BC, and BS to anti-BA spore antibody) is unique and has great potential in the detection of general biological species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号