首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
化学   18篇
物理学   25篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
Luminescence temperature antiquenching (LTAQ) is observed for water-soluble CdTe quantum dots (QDs) capped with aminoethanethiol (AET). The efficient exciton emission (quantum efficiency of approximately 40% at 300 K) is quenched almost completely as the QD solutions are cooled to below 230 K and is fully recovered around 270 K upon warming up to room temperature (LTAQ). Temperature-dependent lifetime measurements show that the quenching rate is high, resulting in an on/off behavior. No LTAQ is observed for CdTe QDs capped with aminoundecanethiol (AUT). The LTAQ is explained by the influence of solvent freezing on the surface of the QD core. Freezing of the solvation water molecules surrounding the QD will induce strain in the capping shell, due to the interaction between water and the charged heads of the capping molecules. Short carbon chains (AET) will propagate the strain to the QD surface, creating surface quenching states, whereas long and flexible chains (AUT) will dissipate the strain, thus avoiding surface distortion. Freezing-point depression by the addition of methanol results in a lowering of the transition temperature. Additional support is provided by the size dependence of the LTAQ: smaller particles, with higher local ionic strength due to a higher density of charged NH(3)(+) surface groups, experience a lower transition temperature due to stronger local freezing-point depression.  相似文献   
2.
3.
Electron paramagnetic resonance and electron nuclear double resonance (ENDOR) experiments on ZnO nanoparticles reveal the presence of shallow donors related to interstitial Li and Na atoms. The shallow character of the wave function is evidenced by the multitude of 67Zn ENDOR lines and further by the hyperfine interactions with the 7Li and 23Na nuclei that are much smaller than for atomic lithium and sodium. In the case of the Li-doped nanoparticles, an increase of the hyperfine interaction with the 7Li nucleus and with the 1H nuclei in the Zn(OH)(2) capping layer is observed when reducing the size of the nanoparticles. This effect is caused by the confinement of the shallow-donor 1s-type wave function that has a Bohr radius of about 1.5 nm, i.e., comparable to the dimension of the nanoparticles.  相似文献   
4.
Electronic noses are a new class of analytical instruments anticipated to have an impact in many areas. They are based around an array of sensors each having a partial specificity and thus producing an odour fingerprint that can be identified by a pattern recognition system. In this review the technologies involved are discussed, giving particular emphasis to the sensors since these form the heart of the systems. The major sensor technologies are described, indicating both their strengths and their weaknesses. Finally, after a brief discussion of data processing technologies, the review ends with an assessment of the current state of the art and possible future directions. Received: 2 November 1998 / Accepted: 29 December 1998  相似文献   
5.
Room-temperature time-resolved luminescence measurements on single CdSe/ZnS quantum dots (QDs) are presented. Fluorescence emission spectra were recorded over periods of up to 30 minutes with a time resolution as small as 6 ms. For QDs in ambient air, a clear 30–40 nm blue shift in the emission wavelength is observed, before the luminescence stops after about 2–3 minutes because of photobleaching. In a nitrogen atmosphere, the blue shift is absent while photobleaching occurs after much longer times (i.e., 10–15 minutes). These observations are explained by photoinduced oxidation. The CdSe surface is oxidized during illumination in the presence of oxygen. This effectively results in shrinkage of the CdSe core diameter by almost 1 nm and consequently in a blue shift. The faster fading of the luminescence in air suggests that photoinduced oxidation results in the formation of non-radiative recombination centers at the CdSe/CdSeOx interface. In a nitrogen atmosphere, photoinduced oxidation is prevented by the absence of oxygen. Additionally, a higher initial light output for CdSe/ZnS QDs in air is observed. This can be explained by a fast reduction of the lifetime of the long-lived defect states of CdSe QDs by oxygen.  相似文献   
6.
We have performed ultrafast absorption bleach recovery and fluorescence upconversion measurements ( approximately 100 fs time resolution) for three CdSe samples, with nanoparticle diameters of 2.7, 2.9, and 4.3 nm. The two types of experiments provide complementary information regarding the contributions of the different processes involved in the fast relaxation of electrons and holes in the CdSe quantum dots. Transient absorption and emission experiments were conducted for the 1S [1Se-1S3/2(h)] transition, 1S(e) and 1S3/2(h) representing the lowest electron (e) and hole (h) levels. The bleach recovery of the 1S transition shows a approximately 400-500 fs initial rise, which is followed by a size-dependent approximately 10-90 ps decay and finally a long-lived (approximately ns) decay. The fluorescence upconversion signal for the 1S transition shows quite different temporal behavior: a two times slower rise time (approximately 700-1000 fs) and, when the fluorescence upconversion signal has risen to about 20% of its maximum intensity, the signal displays a slight leveling off (bend), followed by a continued rise until the maximum intensity is reached. This bend is well reproducible and power and concentration independent. Simulations show that the bend in the rise is caused by a very fast decay component with a typical time of about 230-430 fs. Considering that the 1S quantum dot excitation is comprised of five exciton substates (F=+/-2, +/-1L, 0L, +/-1U, and 0U), we attribute the disparity in the rise of the bleaching and emission transients to the results from the dynamics of the different excitons involved in respectively the bleaching and fluorescence experiments. More specifically, in transient absorption, population changes of the F=+/-1U excitons are probed, in emission population effects for the F=+/-2 ("dark") and the F=+/-1L ("bright") exciton states are monitored. It is discussed that the fast (approximately 400-500 fs) rise of the bleach recovery is representative of the feeding of the F=+/-1U exciton (by filling of the 1S(e) electron level) and that the slower (approximately 700-1000 fs) feeding of the emissive +/-2, +/-1L excitons is determined by the relaxation of the hole levels within the 1S3/2 fine structure. Finally, the approximately 230-430 fs component, typical of the bend in the fluorescence transient, is attributed to the thermalization of the close-lying +/-2 ("dark") and +/-1L ("bright") excitons.  相似文献   
7.
The properties of dynamically compacted monoclinic zirconia have been studied by X-ray powder diffraction, IR, Raman, EPR and luminescence spectroscopy. Compaction introduces a large number of defects into the sample, which leads to a broadening of the X-ray lines, and IR and Raman bands. Besides, Raman spectra of compacted samples recorded with both 1064 and 488 nm excitation show additional bands in comparison with original monoclinic zirconia. The bands in the region 540–730 nm with 488 nm excitation are ascribed to electronic transitions of Sm3+ ions. The nature of the extra bands in the 3000–1830 cm−1 region observed with 1064 nm excitation is unknown. Their intensity depends on the concentration of defects, but these bands are still observed for a sample containing no paramagnetic defects. In contrast to uncompacted zirconia, the EPR spectrum of the dynamically compacted material shows defects, most likely related to VO (oxygen vacancies), which might be an indication for ionic conduction. As monoclinic zirconia is not an ionic conductor, it could be that shock-compaction introduces sample conductivity, e.g. ionic conduction, which can be important for the development of new applications such as batteries.  相似文献   
8.
Stable dispersions of molecularlike aggregates of CdTe quantum dots are prepared by chemical cross-linking. Cryo-TEM images confirm the presence of cross-linked quantum dots and show that the size of the small aggregates can be controlled by the amount of cross-linker added. Optical measurements reveal two types of interdot interactions within these quantum-dot molecules: exciton energy transfer and electronic coupling. Quantitative information on the energy transfer rates in quantum-dot molecules is obtained by photoluminescence lifetime measurements. The degree of electronic coupling is dependent on the size of the quantum dots, which is supported by quantum mechanical calculations.  相似文献   
9.
Liquid phase transmission electron microscopy (LP‐TEM) is a novel and highly promising technique for the in situ study of important nanoscale processes, in particular the synthesis and modification of various nanostructures in a liquid. Destabilization of the samples, including reduction, oxidation, or dissolution by interactions between electron beam, liquid, and sample, is still one of the main challenges of this technique. This work focuses on amorphous silica nanospheres and the phenomena behind their reshaping and dissolution in LP‐TEM. It is proposed that silica degradation is primarily the result of reducing radical formation in the liquid phase and the subsequent accelerated hydroxylation of the silica, while alterations in silica solid structure, pH, and oxidizing species formation had limited influence. Furthermore, the presence of water vapor instead of liquid water also results in degradation of silica. Most importantly however, it is shown that the addition of scavengers for reducing radicals significantly improved amorphous silica stability during LP‐TEM imaging. Devising such methods to overcome adverse effects in LP‐TEM is of the utmost importance for further development and implementation of this technique in studies of nanoscale processes in liquid.  相似文献   
10.
A general organometallic route has been developed to synthesize Co(x)Ni(1-x) and Co(x)Fe(1-x) alloy nanoparticles with a fully tunable composition and a size of 4-10?nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co(2)(CO)(8)), here the cobalt-cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11051-012-0991-5) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号