首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   11篇
  国内免费   1篇
化学   250篇
晶体学   3篇
力学   2篇
数学   20篇
物理学   31篇
  2023年   1篇
  2022年   24篇
  2021年   32篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   8篇
  2016年   5篇
  2015年   19篇
  2014年   16篇
  2013年   24篇
  2012年   19篇
  2011年   27篇
  2010年   21篇
  2009年   13篇
  2008年   23篇
  2007年   14篇
  2006年   9篇
  2005年   10篇
  2004年   10篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1975年   1篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
1.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   
2.
A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial enzymatic preparation (Celluclast) was developed. The CBD obtained, isolated from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30% glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBD-fluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very slow process.  相似文献   
3.
Organometallic-cyclodextrin inclusion compounds were obtained by the treatment of molybdenocene dichloride (Cp2MoCl2) with the modified cyclodextrins (CDs) heptakis-2,3,6-tri-O-methyl-β-CD (TRIMEB) and 2-hydroxypropyl-β-CD (HPβCD) in aqueous solution. The products were isolated by liophilisation and characterised in the solid-state by powder XRD, thermogravimetric analysis, Raman and FTIR spectroscopy, and 13C CP MAS NMR spectroscopy. The results are consistent with inclusion of Cp2MoCl2, rather than hydrolysis products such as [Cp2Mo(H2O)X]+ (X = Cl, OH) or [Cp2Mo(H2O)2]2+. The pure non-included metallocene Cp2MoCl2 and its inclusion compounds with unmodified β-CD, TRIMEB and HPβCD were screened for their potential antiproliferative and cytotoxic activity, in both human cancer and healthy cell lines. Inclusion in CD was found to enhance the cytotoxic effect of Cp2MoCl2, with the TRIMEB adduct displaying the highest anti-tumour activity, along with the lowest toxicity towards non-neoplastic cells.  相似文献   
4.
The anti-hyperglycemic flavonoid extract obtained from Genista tenera was first studied by liquid chromatography (LC)-diode array detection (DAD) which showed the presence of two major compounds. One of them was identified as genistein-7-O-glucoside. Luteolin-7-O-glucoside was detected as a minor constituent, while luteolin-7,3'-di-O-glucoside and rutin were found in trace amounts. LC-DAD-ESI-MS and NMR were used to confirm the structure of these compounds and allowed the elucidation of the structure of the unknown major compound, which is the flavonoid 5,7,4'-trihydroxyisoflavone-8-C-glucoside.  相似文献   
5.

Tissue furnish optimization plays a key role in enhancing tissue properties, making the process cost-effective. Typically, this furnish is composed of a mixture of hardwood eucalyptus fibers (HW) and softwood (SW) fibers, which ensure strength and tissue machine runnability. However, the tissue paper production with the maximization of eucalyptus fibers achieves softer papers at less cost, since SW fibers are often more expensive than HW fibers. From this perspective, this study aims to investigate the effect of micro/nano-fibrillated cellulose (MFC/NFC) as an additive, on structural, softness, strength, and water absorption properties of tissue papers, promoting partial or total removal of SW fibers to produce 100% eucalyptus materials. MFC/NFC was characterized in terms of morphological, chemical, and water interaction properties. The results showed that MFC/NFC presents a high bonding surface area, high carboxyl group content and, when incorporated into tissue furnishes, it promotes strong inter-fiber bonds. This evidence was also supported by SEM image analysis methods and FTIR. Additionally, laboratory tissue handsheets with low basis weight were produced and used in the characterization assays. Overall, the results indicated that MFC/NFC improved strength, at the expense of bulk, porosity, softness, and absorption properties. Compared to typical industrial furnish mixtures (75%HW?+?25%SW), MFC/NFC enhanced the production of bulkier, porous, and softer structures, but with reduced strength and absorption. It was possible to optimize the furnish composition by using fiber modeling to obtain 3D structure computation simulations with predictive capability. The MFC/NFC proved to be a high-quality additive to improve softness and strength properties.

Graphic abstract
  相似文献   
6.
The objectives of this study were threefold: (i) assess immunogenicity of donor plasma proteins following hepatic xenotransplantation, (ii) identify potential immunogens, and (iii) consider the implications of antibody formation against these plasma proteins in xenograft survival. We studied liver and heart xenografts in a concordant combination, hamster to rat. All grafts were examined at necropsy for evidence of rat immunoglobulin G (IgG) deposition. Cardiac xenografts were placed in recipients who had, or had not, been sensitized with hamster serum. Hepatic xenografts were placed in naive recipients to see if antibodies to hamster serum proteins could be eluted from the rejecting organ. Sera of immunized rats were examined for the presence of anti-hamster antibodies by immunoelectrophoresis and by Western blotting following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of hamster serum. Antibodies in sera of immunized rats were compared with those eluted from rejecting livers. Candidate antigens were identified by tandem mass spectrometry, sequence analysis, and reference to protein databases. Results showed that sera of immunized rats recognized a minimum of four different antigens in hamster serum by immunoelectrophoresis, and a minimum of seven by the more sensitive SDS-PAGE Western blot. IgG eluted from rejecting livers bound three of seven candidate antigens recognized by sera of the immunized animals. Sequence analysis searches revealed proteinase inhibitors in each of the three SDS-PAGE bands common to the above samples. All of these candidate proteinase inhibitor immunogens share a common catabolic fate, uptake via the lipoprotein-related protein (LRP/alpha 2-macroglobulin receptor (CD91). Sensitization to hamster serum proteins hastened cardiac xenograft rejection in 30-50% of recipients (depending on sensitization protocol). Vascular deposition of rat IgG occurred in all rejecting xenografts. Antibody binding to proteinase inhibitors could disturb their functional activity and contribute to the pathogenesis of delayed xenograft rejection.  相似文献   
7.
We present a series of new inhibitors of the association between nuclear factor kappa B (NF-B) and the corresponding B site in DNA. They were designed using the lead compound 15-deoxy-12,14 -prostaglandin J2 (PGJ2), which is a natural product with demonstrated inhibitory efficiency for this system. First, the binding mode of PGJ2 to NF-B was unraveled by GOLD docking calculation. Subsequently, substitutions were made to PGJ2 to optimize its association with NF-B. Care was taken not to strongly increase the reactivity of the new compounds, and to keep the overall shape, size and hydrophilicity of the lead compound, which should render them a similar bioavailability. Molecular mechanics calculations were performed to decide on the suitability of the substitutions, and to evaluate the energies of association with NF-B. Density functional theory calculations were performed also to study the overall reactivity of the substituted drugs towards NF-B. Important general conclusions were obtained, concerning the improvement of these natural inhibitors; namely, a set of rational methodologies were deduced to improve the association between the PGJ2 derivatives and NF-B, and their efficiency demonstrated by generating a set of substituted complexes, some of them with a very much increased affinity for NF-B, opening new doors to enlarge the therapeutic capabilities of this class of drugs.  相似文献   
8.
In preliminary communications, we reported the diastereoselective synthesis of cularine and sarcocapnine via the intramolecular ring closure of nitrenium and oxenium ions, a new highly diastereoselective reductive methylation with (+)-8-phenylmenthyl chloroacetate followed by reduction with sodium borohydride, and a facile entry to the isoquinoline precursors by aza-Wittig electrocyclic ring closure. We now report the full details of the syntheses of (+)-O-demethylcularine, (+)-cularine, (+)-sarcocapnidine, (+)-sarcocapnine, and (+)-crassifoline and describe different methods of synthesis of their precursors.  相似文献   
9.
Essential oils (EOs) and hydrolates (Hds) are natural sources of biologically active ingredients with broad applications in the cosmetic industry. In this study, nationally produced (mainland Portugal and Azores archipelago) EOs (11) and Hds (7) obtained from forest logging and thinning of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica, were chemically evaluated, and their bioactivity and sensorial properties were assessed. EOs and Hd volatiles (HdVs) were analyzed by GC-FID and GC-MS. 1,8-Cineole was dominant in E. globulus EOs and HdVs, and α- and β-pinene in P. pinaster EOs. Limonene and α-pinene led in P. pinea and C. japonica EOs, respectively. P. pinaster and C. japonica HVs were dominated by α-terpineol and terpinen-4-ol, respectively. The antioxidant activity was determined by DPPH, ORAC and ROS. C. japonica EO showed the highest antioxidant activity, whereas one of the E. globulus EOs showed the lowest. Antimicrobial activity results revealed different levels of efficacy for Eucalyptus and Pinus EOs while C. japonica EO showed no antimicrobial activity against the selected strains. The perception and applicability of emulsions with 0.5% of EOs were evaluated through an in vivo sensory study. C. japonica emulsion, which has a fresh and earthy odour, was chosen as the most pleasant fragrance (60%), followed by P. pinea emulsion (53%). In summary, some of the studied EOs and Hds showed antioxidant and antimicrobial activities and they are possible candidates to address the consumers demand for more sustainable and responsibly sourced ingredients.  相似文献   
10.
Necroptosis has emerged as an exciting target in oncological, inflammatory, neurodegenerative, and autoimmune diseases, in addition to acute ischemic injuries. It is known to play a role in innate immune response, as well as in antiviral cellular response. Here we devised a concerted in silico and experimental framework to identify novel RIPK1 inhibitors, a key necroptosis factor. We propose the first in silico model for the prediction of new RIPK1 inhibitor scaffolds by combining docking and machine learning methodologies. Through the data analysis of patterns in docking results, we derived two rules, where rule #1 consisted of a four-residue signature filter, and rule #2 consisted of a six-residue similarity filter based on docking calculations. These were used in consensus with a machine learning QSAR model from data collated from ChEMBL, the literature, in patents, and from PubChem data. The models allowed for good prediction of actives of >90, 92, and 96.4% precision, respectively. As a proof-of-concept, we selected 50 compounds from the ChemBridge database, using a consensus of both molecular docking and machine learning methods, and tested them in a phenotypic necroptosis assay and a biochemical RIPK1 inhibition assay. A total of 7 of the 47 tested compounds demonstrated around 20–25% inhibition of RIPK1’s kinase activity but, more importantly, these compounds were discovered to occupy new areas of chemical space. Although no strong actives were found, they could be candidates for further optimization, particularly because they have new scaffolds. In conclusion, this screening method may prove valuable for future screening efforts as it allows for the exploration of new areas of the chemical space in a very fast and inexpensive manner, therefore providing efficient starting points amenable to further hit-optimization campaigns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号