首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12841篇
  免费   1593篇
  国内免费   1057篇
化学   9535篇
晶体学   140篇
力学   531篇
综合类   111篇
数学   1455篇
物理学   3719篇
  2024年   30篇
  2023年   184篇
  2022年   356篇
  2021年   379篇
  2020年   412篇
  2019年   405篇
  2018年   313篇
  2017年   325篇
  2016年   594篇
  2015年   523篇
  2014年   712篇
  2013年   938篇
  2012年   1128篇
  2011年   1155篇
  2010年   778篇
  2009年   699篇
  2008年   823篇
  2007年   737篇
  2006年   622篇
  2005年   539篇
  2004年   540篇
  2003年   443篇
  2002年   491篇
  2001年   332篇
  2000年   252篇
  1999年   251篇
  1998年   158篇
  1997年   128篇
  1996年   157篇
  1995年   125篇
  1994年   116篇
  1993年   110篇
  1992年   114篇
  1991年   97篇
  1990年   53篇
  1989年   61篇
  1988年   38篇
  1987年   42篇
  1986年   41篇
  1985年   48篇
  1984年   18篇
  1982年   15篇
  1981年   19篇
  1980年   15篇
  1978年   11篇
  1977年   15篇
  1974年   13篇
  1959年   12篇
  1958年   11篇
  1957年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
2.
Wang  Xigui  Ruan  Jiafu  Wang  Yongmei  Ji  Shue  An  Siyuan 《Meccanica》2021,56(2):303-316
Meccanica - In gear pair actual alternating meshing process, the comprehensive errors of the transmission system and the thermal elastic deformation of the teeth body cause the gears in the meshing...  相似文献   
3.
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.  相似文献   
4.
The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46–58 nm and periodicities of 70–102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.  相似文献   
5.
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.Subject terms: Comparative genomics, Metagenomics  相似文献   
6.
Monatshefte für Chemie - Chemical Monthly - The voltammetric behavior of 5-nitroindazole was investigated at polished (p-AgSAE) and at mercury meniscus-modified (m-AgSAE) silver solid amalgam...  相似文献   
7.
A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase‐supported metal–organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors.  相似文献   
8.
9.
Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing.  相似文献   
10.
Baik  Hyungryul  Kim  Changsub  Kwak  Sanghoon  Shin  Hyunshik 《Geometriae Dedicata》2021,214(1):399-426
Geometriae Dedicata - We show that an Anosov map has a geodesic axis on the curve graph of the torus. The direct corollary of our result is the stable translation length of an Anosov map on the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号