首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
化学   9篇
物理学   4篇
  2022年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2001年   1篇
  1994年   1篇
  1930年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
An alkyl‐radical loss and an alkene loss are two competitive fragmentation pathways that deprotonated aminobenzoate esters undergo upon activation under mass spectrometric conditions. For the meta and para isomers, the alkyl‐radical loss by a homolytic cleavage of the alkyl‐oxygen bond of the ester moiety is the predominant fragmentation pathway, while the contribution from the alkene elimination by a heterolytic pathway is less significant. In contrast, owing to a pronounced charge‐mediated ortho effect, the alkene loss becomes the predominant pathway for the ortho isomers of ethyl and higher esters. Results from isotope‐labeled compounds confirmed that the alkene loss proceeds by a specific γ‐hydrogen transfer mechanism that resembles the McLafferty rearrangement for radical cations. Even for the para compounds, if the alkoxide moiety bears structural motifs required for the elimination of a more stable alkene molecule, the heterolytic pathway becomes the predominant pathway. For example, in the spectrum of deprotonated 2‐phenylethyl 4‐aminobenzoate, m/z 136 peak is the base peak because the alkene eliminated is styrene. Owing to the fact that all deprotonated aminobenzoate esters, irrespective of the size of the alkoxy group, upon activation fragment to form an m/z 135 ion, aminobenzoate esters in mixtures can be quantified by precursor ion discovery mass spectrometric experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
3.
4.
We have measured a diamagnetic persistent current with flux periodicities of both h/e and h/2e in an array of thirty diffusive mesoscopic gold rings. At the lowest temperatures, the magnitudes of the currents per ring corresponding to the h/e- and h/2e-periodic responses are both comparable to the Thouless energy E(c) identical with Planck's over 2pi/tau(D), where tau(D) is the diffusion time. Taken in conjunction with earlier experiments, our results strongly challenge the conventional theories of persistent current. We consider a new approach associated with the saturation of the phase coherence time tau(phi).  相似文献   
5.
We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [?SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases. Figure
?  相似文献   
6.
In the negative‐ion collision‐induced dissociation mass spectra of most organic sulfonates, the base peak is observed at m/z 80 for the sulfur trioxide radical anion (SO3–·). In contrast, the product‐ion spectra of a few sulfonates, such as cysteic acid, aminomethanesulfonate, and 2‐phenylethanesulfonate, show the base peak at m/z 81 for the bisulfite anion (HSO3). An investigation with an extensive variety of sulfonates revealed that the presence of a hydrogen atom at the β‐position relative to the sulfur atom is a prerequisite for the formation of the bisulfite anion. The formation of HSO3 is highly favored when the atom at the β‐position is nitrogen, or the leaving neutral species is a highly conjugated molecule such as styrene or acrylic acid. Deuterium‐exchange experiments with aminomethanesulfonate demonstrated that the hydrogen for HSO3 formation is transferred from the β‐position. The presence of a peak at m/z 80 in the spectrum of 2‐sulfoacetic acid, in contrast to a peak at m/z 81 in that of 3‐sulfopropanoic acid, corroborated the proposed hydrogen transfer mechanism. For diacidic compounds, such as 4‐sulfobutanoic acid and cysteic acid, the m/z 81 ion can be formed by an alternative mechanism, in which the negative charge of the carboxylate moiety attacks the α‐carbon relative to the sulfur atom. Experiments conducted with deuterium‐exchanged and deuterium‐labeled analogs of sulfocarboxylic acids demonstrated that the formation of the bisulfite anion resulted either from a hydrogen transfer from the β‐carbon, or from a direct attack by the carboxylate moiety on the α‐carbon. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
8.
In addition to the well-known SO2 loss, there are several additional fragmentation pathways that gas-phase anions derived from N-phenyl benzenesulfonamides and its derivatives undergo upon collisional activation. For example, N-phenyl benzenesulfonamide fragments to form an anilide anion (m/z 92) by a mechanism in which a hydrogen atom from the ortho position of the benzenesulfonamide moiety is specifically transferred to the charge center. Moreover, after the initial SO2 elimination, the product ion formed undergoes primarily, an inter-annular H2 loss to form a carbazolide anion (m/z 166) because the competing intra-annular H2 loss is significantly less energetically favorable. Results from tandem mass spectrometric experiments conducted with deuterium-labeled compounds confirmed that the inter-ring mechanism is the preferred pathway. Furthermore, N-phenyl benzenesulfonamide and its derivatives also undergo a phenyl radical loss to form a radical ion with a mass-to-charge ratio of 155, which is in violation of the so-called “even-electron rule.”
Figure
?  相似文献   
9.
Dried saliva spot (DSS) sampling is a non-invasive sample collection technique for bioanalysis that can be potentially implemented at the patient's home. A UHPLC-MS/MS assay was developed using detergent-assisted sample extraction to quantify BMS-927711, a drug candidate in development for the treatment of migraines, in human DSS. By implementing DSS sampling at the patients' home, the bioanalytical sample collection for pharmacokinetic evaluation can be done at the time of the acute migraine attack without the need for clinical visits. DSS samples were prepared by spotting 15 μL of liquid saliva onto regular Whatman FTA™ DMPK-C cards and verified with a UV lamp (at λ 254 nm or 365 nm) during DSS punching. The 4-mm DSS punches in a 96-well plate were sonicated with 200 μL of [13C2, D4]-BMS-927711 internal standard (IS) solution in 20/80 MeOH/water for 10 min, followed by sonication with 50 μL of 100 mM NH4OAc with 1.0% Triton-X-100 (as detergent) prior to liquid-liquid extraction with 600 μL EtOAc/Hexane (90:10). UHPLC-MS/MS was performed with an Aquity® UPLC BEH C18 Column (2.1 × 50 mm, 1.7 μm) on a Triple Quad™ 5500 mass spectrometer. The assay was linear with a concentration range from 2.00 to 1000 ng mL−1 for BMS-927711 in human saliva. The intra- and inter-assay precision was within 8.8% CV, and the accuracy was within ±6.7% Dev of the nominal concentration values. This UHPLC–MS/MS assay has been successfully applied to determine the drug's pharmacokinetics within a clinical study. For the first time, we observed BMS-927711 exposure in human DSS, confirming the suitability of this sampling technique for migraine patients to use at home. Detergent-assisted extraction with Triton-X-100 could be very useful in DSS or other dried matrix spot (DMS) assays to overcome low or inconsistent analyte recovery issues.  相似文献   
10.
Electron ionization (EI) mass spectra are not very helpful for characterizing ortho, meta, and para isomers of underivatized haloanilines since their spectra are virtually identical. In contrast, when the amino group of chloro-, bromo-, or iodoanilines is transformed to an N-formyl, N-acetyl, or N-benzoyl derivative, the spectra of the derivatives reveal a highly dramatic loss of a halogen radical, instead of an HX elimination usually expected from an "ortho effect." For example, the spectra of N-formyl, N-acetyl, and N-benzoyl derivatives of ortho isomers of chloro-, bromo-, and iodoanilines show a very prominent peak at m/z 120, 134, and 196, respectively, for the loss of the corresponding halogen atom.  相似文献   
1 [2] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号