首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
化学   18篇
力学   1篇
数学   7篇
物理学   2篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
  1984年   2篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
We have carried out a molecular dynamics study of dimethyl sulfoxide (DMSO) in water at 298 K at two different densities by simulating two different concentrations: 0.055 and 0.19 mole fraction. We have found an enhancement in the structure of water, an effect that becomes more pronounced as the concentration of DMSO increases. At both concentrations there is a well-defined hydration structure around the oxygen atom of DMSO, which is able to establish strong hydrogen bonds with surrounding water molecules. An increase in the concentration of DMSO depletes the solution of bulk water molecules, reducing the number of hydrogen bonds that water can have in the immediate vicinity of DMSO but increasing the strength of the hydrogen bonds made between the oxygen atom of DMSO and water. There is clear evidence of ‘hydrophobic’ hydration around the methyl groups of DMSO, which is enhanced as the concentration of DMSO increases.  相似文献   
2.
Redox-active Cu(II) complexes are able to form reactive oxygen species (ROS) in the presence of oxygen and reducing agents. Recently, Faller et al. reported that ROS generation by Cu(II) ATCUN complexes is not as high as assumed for decades. High complex stability results in silencing of the Cu(II)/Cu(I) redox cycle and therefore leads to low ROS generation. In this work, we demonstrate that an exchange of the α-amino acid Gly with the β-amino acid β-Ala at position 2 (Gly2→β-Ala2) of the ATCUN motif reinstates ROS production (OH and H2O2). Potentiometry, cyclic voltammetry, EPR spectroscopy and DFT simulations were utilized to explain the increased ROS generation of these β-Ala2-containing ATCUN complexes. We also observed enhanced oxidative cleavage activity towards plasmid DNA for β-Ala2 compared to the Gly2 complexes. Modifications with positively charged Lys residues increased the DNA affinity through electrostatic interactions as determined by UV/VIS, fluorescence, and CD spectroscopy, and consequently led to a further increase in nuclease activity. A similar trend was observed regarding the cytotoxic activity of the complexes against several human cancer cell lines where β-Ala2 peptide complexes had lower IC50 values compared to Gly2. The higher cytotoxicity could be attributed to an increased cellular uptake as determined by ICP-MS measurements.  相似文献   
3.
Commonly, sparks emit light according to the well-known black (gray) body radiation. Recently, we reported on color-changing sparks based on erbium powder, which switch their light emission between black body emission (surface combustion) and element-specific emission (vapor phase combustion). Herein, we investigated the spark formation from the adjacent rare-earth elements. The corresponding boiling points are significantly below (Yb, Sm, Tm) or above (Y, Lu) the boiling point of Er. While Yb and Sm evaporate too fast to form longer sparks, Y, Lu and Tm form color-changing sparks with varying length of the element-specific emission phase. The sparks were investigated by time-resolved emission spectroscopy, long-time exposures, and NIR/MIR imaging. The same basic pyrotechnic formulation containing one of these metal powders reveals a strongly differing burning behavior depending on the boiling point of the metal. The burning characteristics change from a green strobe (Yb) to intense colorful crackling (Tm) and finally a sparkling fountain with long-flying sparks (Lu, Y, Er).  相似文献   
4.
Thin films of PS-b-PEO block copolymers were utilized as structured reservoirs for localized nanoscale precipitation reactions. By consecutively immersing the film into solutions of thioacetamide and cadmium chloride, we were able to obtain a monolayer of cadmium sulfide nanostructures on top of the block copolymer film. AFM and grazing incidence small angle X-ray scattering revealed spherical nanostructures (d = 15 nm) corresponding to the dimensions given by the block copolymer film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1569–1573, 2010  相似文献   
5.
Molecular dynamics atomistic simulations in the canonical ensemble (NVT-MD) have been used to investigate the "Local Density Inhomogeneities and their Dynamics" in pure supercritical water. The simulations were carried out along a near-critical isotherm (Tr = T/Tc = 1.03) and for a wide range of densities below and above the critical one (0.2 rho(c) - 2.0 rho(c)). The results obtained reveal the existence of significant local density augmentation effects, which are found to be sufficiently larger in comparison to those reported for nonassociated fluids. The time evolution of the local density distribution around each molecule was studied in terms of the appropriate time correlation functions C(Delta)rhol(t). It is found that the shape of these functions changes significantly by increasing the density of the fluid. Finally, the local density reorganization times for the first and second coordination shell derived from these correlations exhibit a decreasing behavior by increasing the density of the system, signifying the density effect upon the dynamics of the local environment around each molecule.  相似文献   
6.
In this note we give a short and self-contained proof for a criterion of Eidelheit on the solvability of linear equations in infinitely many variables. We use this criterion to study the surjectivity of magnetic Schrödinger operators on bundles over graphs.  相似文献   
7.
Combined ab initio and grand canonical Monte Carlo simulations have been performed to investigate the dependence of hydrogen storage in single-walled carbon nanotubes (SWCNTs) on both tube curvature and chirality. The ab initio calculations at the density functional level of theory can provide useful information about the nature of hydrogen adsorption in SWCNT selected sites and the binding under different curvatures and chiralities of the tube walls. Further to this, the grand canonical Monte Carlo atomistic simulation technique can model large-scale nanotube systems with different curvature and chiralities and reproduce their storage capacity by calculating the weight percentage of the adsorbed material (gravimetric density) under thermodynamic conditions of interest. The author's results have shown that with both computational techniques, the nanotube's curvature plays an important role in the storage process while the chirality of the tube plays none.  相似文献   
8.
The supercritical mixture ethanol-carbon dioxide (EtOH-CO2) with mole fraction of ethanol X(EtOH) congruent with 0.1 was investigated at 348 K, by employing the molecular dynamics simulation technique in the canonical ensemble. The local intermolecular structure of the fluid was studied in terms of the calculated appropriate pair radial distribution functions. The estimated average local coordination numbers and mole fractions around the species in the mixture reveal the existence of local composition enhancement of ethanol around the ethanol molecules. This finding indicates the nonideal mixing behavior of the mixture due to the existence of aggregation between the ethanol molecules. Furthermore, the local environment redistribution dynamics have been explored by analyzing the time correlation functions (TCFs) of the total local coordination number (solvent, cosolvent) around the cosolvent molecules in appropriate parts. The analysis of these total TCFs in the auto-(solvent-solvent, cosolvent-cosolvent) and cross-(solvent-cosolvent, cosolvent-solvent) TCFs has shown that the time dependent redistribution process of the first solvation shell of ethanol is mainly determined by the redistribution of the CO2 solvent molecules. These results might be explained on the basis of the CO2-CO2 and EtOH-CO2 intermolecular forces, which are sufficiently weaker in comparison to the EtOH-EtOH hydrogen bonding interactions, creating in this way a significantly faster redistribution of the CO2 molecules in comparison with EtOH. Finally, the self-diffusion coefficients and the single reorientational dynamics of both the cosolvent and solvent species in the mixture have been predicted and discussed in relationship with the local environment around the species, which in the case of the EtOH molecules seem to be strongly affected.  相似文献   
9.
Diffusion jumps of small molecules dispersed in chain molecules or other kinds of slow-moving matrices have already been observed in many previous simulations of such systems, and their treatment led to important qualitative conclusions. In the present work, a new, very simple yet effective method is described, allowing for both identification of individual penetrant jump events and their quantitative treatment in a statistical sense. The method is applied in equilibrium Molecular Dynamics simulations for systems of gaseous alkanes, methane through n-butane, including also a mixture of methane and n-butane, dispersed in n-decane or n-eicosane. Equilibration and attainment of a linear diffusion regime is confirmed by means of various criteria, and the jumps detection method is applied to all systems studied. The results obtained clearly show the existence of distinct jump events in all cases, although the average jump length is reduced with penetrant or liquid alkane molecular weight. The method allows one to determine the average jump length and the corresponding jumps frequency. On the basis of these results, it was possible to estimate a random walk type diffusion coefficient, D(s,jumps), of the penetrants, which was found to be substantially lower compared with the overall diffusion coefficient D(s,MSD) obtained by the mean square displacement method. This finding led us to assume that the overall penetrants' diffusion in the studied systems is a combination of longer jumps with a smoother and more gradual displacement, a result that confirms assumptions suggested in previous studies.  相似文献   
10.
A powerful model to predict aeroacoustic interactions in the linear regime is the perturbed compressible linearized Navier–Stokes equations. Thus far, the frequently employed derivation suggests that the effect of turbulence and its associated Reynolds stresses is neglected and a quasi-laminar model is employed. In this paper, dynamic perturbation equations are derived incorporating the effect of turbulence and its interaction with perturbation quantities. This is done by employing a triple decomposition of the instantaneous variables. The procedure results in a closure problem for the Reynolds stresses for which a linear eddy-viscosity model is proposed. The resulting perturbation equations are applied to a grazing flow in a T-joint for which strong shear layer instabilities at certain frequencies are experimentally observed. Passive scattering properties of the grazing flow are validated against the experiments performed by Karlsson and Åbom and perturbation equations being quasi-laminar. We find that prediction models must include the effect of Reynolds stresses to capture the aeroacoustic interaction effects correctly. Neglecting its effect naturally results in the over prediction of vortex growth at the frequencies of shear layer instability and therewith in an over prediction of aeroacoustic interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号