首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   4篇
物理学   10篇
  2021年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Developing of a simple method for the fabrication of superparamagnetic iron oxide nanoparticles (Nps) is still a challenge for materials scientists. This work reveals a way to fabricate especially stable ferrofluids from spherical Nps of magnetite using the co-precipitation method, for which a new (diglycolic acid) stabilizer was applied. The Nps of the average size of ~7.4–16.5 nm were characterized by means of high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), selective area electron diffraction (SAED), Raman, FTIR and Mössbauer spectroscopy. The stabilization effect of the diglycolic acid for the growth of superparamagnetic Nps growth was discussed on the basis of experimental results.  相似文献   
2.
3.
Journal of Solid State Electrochemistry - The purpose of this work was to study and analyze the effect of electrolyte temperature and anodization voltage on cell morphology of thin films of...  相似文献   
4.
In the present work infrared spectroscopy, photoluminescence spectral measurements and the potenthiodynamic technique for studying the effect of treatment temperature on compositional and electronic properties of malonic acid alumina films were used. In the course of our studies, it has been proven that heat treatment of malonic acid films at temperatures from 250 up to 400 °C leads to considerable changes in the photoluminescence properties and voltammetric response during their potentiodynamic re-anodizing. We suggest that defects, such as electron traps, in this type of porous anodic films are caused by the atoms of hydrogen (one or two) escaping from the CH2 groups of the malonic acid species as a result of the heat treatment. The sites of such defects provide pathways for easy electron migration under a high electric field increasing electroconductivity of anodic alumina films. On the contrary, no structural defects responsible for enhanced electroconductivity are observed during thermal splitting of oxalate groups in the oxalic acid alumina films.  相似文献   
5.
The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 °C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.  相似文献   
6.
The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of ‘structural’ oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.  相似文献   
7.
In the present work IR spectroscopy, electron probe microanalysis (EPMA) and photoluminescence (PL) spectral measurements were applied to study the effect of treatment temperature (T) on compositional and luminescent properties of malonic acid alumina films. Our studies have shown that the heat treatment of anodic alumina films at investigated temperatures from 100 up to 700 °C changes their photoluminescence spectra considerably. An increase in T results in the PL intensity growth. When reaching its maximum at 600 °C the luminescence intensity then decreases drastically with further T growth. The films heat-treated at 500 and 600 °C demonstrate asymmetrical PL band with Gaussian peaks at 437 and 502 nm. We proved that the malonic acid species incorporated into the alumina bulk during the film formation are responsible for photoluminescence band with its peak at 437 nm.  相似文献   
8.
A new simple method for modification of the porous alumina barrier-layer is described and characterized by the voltammetric, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) techniques. The method is based on re-anodization of porous alumina under galvanostatic conditions in the anodizing bath that, in addition to conventional anodization solution components, contains fluoride salts: (NH4)2SiF6 or NH4F. During first few minutes of alumina re-anodization, the sharp drop of anodizing voltage was observed, which is indicative of chemical/electrochemical transformations of the alumina barrier-layer. As a result, the scalloped structure of the barrier-layer changes drastically, becoming smooth and finely grained. Upon re-anodization, a significant loss of insulating ability of the barrier-layer and considerable increase in its capacitance were observed, while the variation of the constant phase element was found to be consistent with the oxide film morphology transformations observed by microscopy techniques. All these changes intensify with fluoride concentration increase. Curiously, (NH4)2SiF6 exhibited about three-fold stronger effect on the barrier-layer properties than NH4F, thus allowing us to hypothesize about possible chemical break up of SiF62− anion and the formation of the AlF3 phase inside the alumina pores.  相似文献   
9.
We report here on the synthesis of homogenous, well-adherent composite film of Fe2O3/SiO2, up to 7 μm thick, on the titanium substrate by anodic treatment optimized for an aqueous suspension of K2O·SiO2 and Fe2O3 powder under galvanostatic conditions. The end products were characterized by scanning electron microscopy, energy-dispersive X-ray, X-ray powder diffractometry, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy, concluding that the formation of composite coating at the SiO2 to Fe2O3 ratio of approximately 1:1 proceeds just after formation of a thin TiO2 layer with Fe2O3 particle inclusions without transformations via an electrophoresis deposition of negatively charged Fe2O3 species enveloped by silica ions.  相似文献   
10.
We report on the fabrication of γ-phase iron oxyhydroxide (γ-FeOOH, lepidocrocite) nanowire (nw) arrays within the alumina pores by electrodeposition. An aqueous solution, friendly to alumina matrix, was generated and applied in this study for uniform deposition of γ-FeOOH nw arrays directly through the alumina barrier layer using an alternating current (ac) mode. As-deposited nanowired products were characterized using 57Fe Mössbauer spectroscopy (MS), atomic absorption spectrophotometry analysis, field-emission scanning electron microscopy, UV-vis transmission spectroscopy, transmission electron microscopy and X-ray diffraction. The formation of pure lepidocrocite nw arrays in the alumina pores with the average Øpore of 45 and 150 nm was verified by transmission MS at cryogenic temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号