首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  国内免费   3篇
化学   14篇
数学   2篇
物理学   9篇
  2021年   1篇
  2017年   1篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2008年   1篇
  2006年   1篇
  2001年   2篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
Inkjet‐printed high speed polymeric complementary circuits are fabricated using an n‐type ([poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐dithiophene)} [P(NDI2OD‐T2), Polyera ActivInk N2200] and two p‐type polymers [poly(3‐hexylthiophene) (P3HT) and a dithiophene‐based polymer (Polyera ActivInk P2100)]. The top‐gate/bottom‐contact (TG/BC) organic field‐effect transistors (OFETs) exhibit well‐balanced and very‐high hole and electron mobilities (μFET) of 0.2–0.5 cm2/Vs, which were enabled by optimization of the inkjet‐printed active features, small contact resistance both of electron and hole injections, and effective control over gate dielectrics and its orthogonal solvent effect (selection of poly(methyl methacrylate) and 2‐ethoxyethanol). Our first demonstrated inkjet‐printed polymeric complementary devices have been integrated to high‐performance complementary inverters (gain >30) and ring oscillators (oscillation frequency ~50 kHz). We believe that the operating frequency of printable organic circuits can be further improved more than 10 MHz by fine‐tuning of the device architecture and optimization of the p‐ and n‐channel semiconductor processing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
3.
Abstract

This article introduces the main achievements resulting from the DWDM/ODC project. The five areas of research activity within the DWDM/ODC project cover some of the main issues of design and development of dense wavelength division multiplexing systems for transparent optical networks. These issues are: performance assessment with arbitrary optical filtering; performance of signaling formats; dispersion compensation strategies for directly and externally modulated systems in presence of nonlinear transmission-induced degradation; and the impact of noise and crosstalk in the extent of transparent optical networks. All five areas of research activity have contributed significantly to a better understanding of the limitations present in dense wavelength division multiplexing systems.  相似文献   
4.
The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).  相似文献   
5.
Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the α-particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.  相似文献   
6.
The use of selenium nanoparticles (SeNPs) in the biomedical area has been increasing as an alternative to the growing bacterial resistance to antibiotics. In this research, SeNPs were synthesized by green synthesis using ascorbic acid (AsAc) as a reducing agent and methanolic extract of Calendula officinalis L. flowers as a stabilizer. Characterization of SeNPs was performed by UV-vis spectrophotometry, infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. SeNPs of 40–60 nm and spherical morphologies were obtained. The antibacterial activity of marigold extracts and fractions was evaluated by disk diffusion methodology. The evaluation of SeNPs at different incubation times was performed through the colony-forming unit (CFU) count, in both cases against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis bacteria. Partial antibacterial activity was observed with methanolic extracts of marigold leaves and flowers and total inhibition with SeNPs from 2 h for S. marcescens, 1 h for E. cloacae, and 30 min for A. faecalis. In addition, SeNPs were found to exhibit antioxidant activity. The results indicate that SeNPs present a potentiated effect of both antimicrobial and antioxidant activity compared to the individual use of marigold extracts or sodium selenite (Na2SeO3). Their application emerges as an alternative for the control of clinical pathogens.  相似文献   
7.
Oh BN  Lee S  Park HY  Baeg JO  Yoon MY  Kim J 《The Analyst》2011,136(16):3384-3388
A homogeneous assay of the protective antigen in anthrax toxin is reported using two new PA-specific aptamers for selective and sensitive detection, based on reduction in the fluorescence emission according to the formation of the aptamer-PA ternary complex. PA at 1 nM was readily detected using OliGreen as a fluorophore in HEPES buffer. We also demonstrated that the PA detection could be performed in blood serum. The binding interaction between the aptamer and PA was strong enough to dehybridize double-stranded DNA paired completely with 12 bases at room temperature. Moreover, this fluorescence study revealed that the binding sites of the two aptamers were located differently on the PA protein. We believe our approach may lay the groundwork for the real-time detection of PA.  相似文献   
8.
A plug‐flow reactor coated with carbon‐doped TiO2 (C‐TiO2 ) powder was investigated for the control of vaporous aromatics (benzene, toluene, ethylbenzene, and o‐xylene (BTEX)) under a range of experimental conditions. The characteristics of the as‐prepared C‐TiO2 and a reference Degussa P25 TiO2 powder were examined using X‐ray diffraction, scanning electron microscopy, diffuse‐reflectance ultraviolet‐visible‐near infrared spectroscopy, and Fourier transform infrared spectroscopy. The experimental conditions for the photocatalytic performance of the as‐prepared C‐TiO2 photocatalyst were controlled using three operational parameters, relative humidity, flow rate, and input concentration. Unlike other target compounds, very little benzene was removed by the C‐TiO2 photocatalyst under visible‐light irradiation. In contrast, the C‐TiO2 exhibited higher removal efficiencies for the other three target compounds (toluene, ethylbenzene, and xylene) compared with those achieved using unmodified TiO2 under visible‐light irradiation. The highest removal efficiency was obtained at a relative humidity value of 45%. Specifically, the toluene removal efficiency determined at a relative humidity of 45% was 78%, whereas it was close to 0%, 7.2%, and 5.5% for relative humidity values of 20%, 70%, and 95%, respectively. In addition, the removal efficiencies for the three target compounds decreased as the flow rate or input concentration increased. These findings indicate that the as‐prepared C‐TiO2 photocatalyst could be used for the removal of toxic vaporous aromatics under optimized operating conditions.  相似文献   
9.
Developing new high-mobility polymeric semiconductors with good processability and excellent device environmental stability is essential for organic electronics. We report the synthesis, characterization, manipulation of charge carrier polarity, and device air stability of a new series of bithiophene-imide (BTI)-based polymers for organic field-effect transistors (OFETs). By increasing the conjugation length of the donor comonomer unit from monothiophene (P1) to bithiophene (P2) to tetrathiophene (P3), the electron transport capacity decreases while the hole transport capacity increases. Compared to the BTI homopolymer P(BTimR) having an electron mobility of 10(-2) cm(2) V(-1) s(-1), copolymer P1 is ambipolar with balanced hole and electron mobilities of ~10(-4) cm(2) V(-1) s(-1), while P2 and P3 exhibit hole mobilities of ~10(-3) and ~10(-2) cm(2) V(-1) s(-1), respectively. The influence of P(BTimR) homopolymer M(n) on film morphology and device performance was also investigated. The high M(n) batch P(BTimR)-H affords more crystalline film microstructures; hence, 3× increased electron mobility (0.038 cm(2) V(-1) s(-1)) over the low M(n) one P(BTimR)-L (0.011 cm(2) V(-1) s(-1)). In a top-gate/bottom-contact OFET architecture, P(BTimR)-H achieves a high electron mobility of 0.14 cm(2) V(-1) s(-1), only slightly lower than that of state-of-the-art n-type polymer semiconductors. However, the high-lying P(BTimR)-H LUMO results in minimal electron transport on exposure to ambient. Copolymer P3 exhibits a hole mobility approaching 0.1 cm(2) V(-1) s(-1) in top-gate OFETs, comparable to or slightly lower than current state-of-the-art p-type polymer semiconductors (0.1-0.6 cm(2) V(-1) s(-1)). Although BTI building block incorporation does not enable air-stable n-type OFET performance for P(BTimR) or P1, it significantly increases the OFET air stability for p-type P2 and P3. Bottom-gate/top-contact and top-gate/bottom-contact P2 and P3 OFETs exhibit excellent stability in the ambient. Thus, P2 and P3 OFET hole mobilities are almost unchanged after 200 days under ambient, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), induced by the strong BTI electron-withdrawing capacity. Complementary inverters were fabricated by inkjet patterning of P(BTimR)-H (n-type) and P3b (p-type).  相似文献   
10.
A new potentially promising visible-light driven photobioreactor synthesizes fine chemical via photobiocatalysis by generating NADH in a non-enzymatic light-driven process and coupling it to the enzymatic dark reaction catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号