首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   7篇
化学   25篇
数学   2篇
物理学   7篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有34条查询结果,搜索用时 46 毫秒
1.
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13C1 spins of [1-13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2O. Order-unity 13C (>50 %) polarization of catalyst-bound [1-13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient 13C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s−1 versus ∼0.1 s−1, respectively, for a 6 mM catalyst-[1-13C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.  相似文献   
2.
Recently, porous photocatalytically active block copolymer membranes were introduced, based on heterogenized molecular catalysts. Here, we report the integration of the photosensitizer, i. e., the light absorbing unit in an intermolecular photocatalytic system into block copolymer membranes in a covalent manner. We study the resulting structure and evaluate the orientational mobility of the photosensitizer as integral part of the photocatalytic system in such membranes. To this end we utilize transient absorption anisotropy, highlighting the temporal reorientation of the transition dipole moment probed in a femtosecond pump-probe experiment. Our findings indicate that the photosensitizer is rigidly bound to the polymer membrane and shows a large heterogeneity of absolute anisotropy values as a function of location probed within the matrix. This reflects the sample inhomogeneity arising from different protonation states of the photosensitizer and different intermolecular interactions of the photosensitizers within the block copolymer membrane scaffold.  相似文献   
3.
Electronic structure and spin-related properties of CoI2/NiI2 heterostructure were studied by means of density functional theory. It was shown that the electronic structure at the Fermi level can be characterized by a band gap. The effect of the external electric field on charge transfer and electronic properties of the CoI2/NiI2 interface was investigated, and it was found that band gap width depends on the strength of the applied electric field, switching its nature from semiconducting to a half-metallic one. An easy control of the electronic properties and promising spin-polarized nature of the CoI2/NiI2 spinterface allows the heterostructure to be used in spin-related applications.  相似文献   
4.
The effect of UV/visible/NIR light (380/450/530/650/808/1064 nm) on ROS generation, mitochondrial activity and viability is experimentally compared in human neuroblastoma cancer cells. The absorption of photons by mitochondrial photoacceptors in Complexes I, III and IV is in detail investigated by sequential blocking with selective pharmaceutical blockers. Complex I absorbs UV/blue light by heme P450, resulting in a very high rate (14 times) of ROS generation leading to cell death. Complex III absorbs green light, by cytochromes b, c1 and c, and possesses less ability for ROS production (seven times), so that only irradiation lower than 10 mW cm−2 causes an increase in cell viability. Complex IV is well-known as the primary photoacceptor for red/NIR light. Light of 650/808 nm at 10–100 mW cm−2 generates a physiological ROS level about 20% of a basal concentration, which enhance mitochondrial activity and cell survival, while 1064 nm light does not show any distinguished effects. Further, ROS generation induced by low-intensity red/NIR light is compared in neurons, immune and cancer cells. Red light seems to more rapidly stimulate ROS production, mitochondrial activity and cell survival than 808 nm. At the same time, different cell lines demonstrate slightly various rates of ROS generation, peculiar to their cellular physiology.  相似文献   
5.
A hybrid metasurface realized by a double array of brass wires inserted into two high-permittivity dielectric slabs at both sides was used to perform a magnetic resonance spectroscopy experiment at a 1.5 T clinical magnetic resonance scanner. The metasurface coupled inductively to a transceive birdcage body coil located within the scanner’s bore. The metasurface demonstrated an enhancement of the signal-to-noise ratio of the magnetic resonance spectroscopy experiment in vitro. Up to a signal-to-noise ratio gain of 7.4 for choline and creatine spectral lines was observed in the presence of the metasurface compared to the body coil alone.  相似文献   
6.
The spectral luminescent properties of dipyrromethenates halogenated with bromine on both ends of the long axis and coordinated using boron fluoride, zinc, or cadmium in neutral ethanol and acidified with hydrochloric acid solutions were studied. The constants of the acid–base equilibrium of the complexes in the proton-donor solvents in the ground and excited states was determined. The mechanisms of complex protonation were discussed, depending on the structure of the compounds. The electronic structures of the neutral and protonated compounds were modeled and analyzed based on the quantum-chemical method. The structures and spectral-luminescence properties were calculated using the SMD model of ethanol solvent using the TD-DFT theory with the B3LYP functional and the composite def2-SVP/def2-TZVP/def2-TZVPP_ECP basis sets, depending on the atomic number of the elements.  相似文献   
7.
8.
9.
10.
To more adequately extract the effective refractive index and other so-called metamaterial parameters from the reflection and transmission coefficients of a wave for multilayer grid nanostructures in the near-IR spectral range, the Nicholson-Ross-Weir method was modified. The rate of convergence of each extracted metamaterial parameter to a certain limit is studied with increasing number of layers of the structure. For each frequency of the light field, this limit is obviously equal to the value of the parameter that corresponds to an infinite number of layers. The effect of a separation layer of a dielectric between pairs of grids on the convergence rate of extracted parameters is studied. Bulk electrodynamic parameters of the structure are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号