首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   14篇
  国内免费   5篇
化学   347篇
晶体学   7篇
力学   26篇
数学   77篇
物理学   91篇
  2023年   5篇
  2022年   8篇
  2021年   18篇
  2020年   14篇
  2019年   10篇
  2018年   19篇
  2017年   13篇
  2016年   7篇
  2015年   13篇
  2014年   20篇
  2013年   20篇
  2012年   31篇
  2011年   32篇
  2010年   14篇
  2009年   16篇
  2008年   34篇
  2007年   27篇
  2006年   42篇
  2005年   32篇
  2004年   30篇
  2003年   16篇
  2002年   20篇
  2001年   14篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
排序方式: 共有548条查询结果,搜索用时 125 毫秒
1.
Triene 6π electrocyclization, wherein a conjugated triene undergoes a concerted stereospecific cycloisomerization to a cyclohexadiene, is a reaction of great historical and practical significance. In order to circumvent limitations imposed by the normally harsh reaction conditions, chemists have long sought to develop catalytic variants based upon the activating power of metal–alkene coordination. Herein, we demonstrate the first successful implementation of such a strategy by utilizing [(C5H5)Ru(NCMe)3]PF6 as a precatalyst for the disrotatory 6π electrocyclization of highly substituted trienes that are resistant to thermal cyclization. Mechanistic and computational studies implicate hexahapto transition-metal coordination as responsible for lowering the energetic barrier to ring closure. This work establishes a foundation for the development of new catalysts for stereoselective electrocyclizations.  相似文献   
2.
We discuss general questions about the choice of optimization criteria for the stressed state of thermoelastic shells taking account of the functional measures of the space-time variability of its characteristics. The efficiency of the proposed approach is illustrated using the example of the solution of a problem for an axisymmetrically heated cylindrical shell.Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, Issue 27, 1988, pp. 11–18.  相似文献   
3.
4.
5.
The effects of water molecules and quat structure are shown to be significant in determining the behavior of alkylation reactions of weakly acidic carbon acids under PTC/OH? conditions.  相似文献   
6.
7.
Constant magnetic fields affect many biological transformations, but we lack mechanistic understanding of the processes. The magnetohydrodynamic effect may account for the enhancement of bioelectrocatalytic transformations at interfaces. This is exemplified by the bioelectrocatalyzed cytochrome c-mediated reduction of oxygen and oxidation of lactate in the presence of cytochrome oxidase and lactate dehydrogenase, respectively. We observe significant magnetic field effects on the rates of bioelectrochemical transformations (ca. 3-fold increase) at the functionalized interfaces at field strengths, B, up to 1 T. We show that the limiting current is proportional to the B(1/3)C*(4/3), where C is the concentration of electroactive species. The results may have important implications on the understanding of the magnetic field effects on natural biocatalytic processes at membranes and on the enhancement of biotransformations in biotechnology.  相似文献   
8.
The enzymes glucose oxidase (GOx), acetylcholine esterase (AchE) and urease that drive biocatalytic transformations to alter pH, are integrated into pH-responsive DNA-based hydrogels. A two-enzyme-loaded hydrogel composed of GOx/urease or AchE/urease and a three-enzyme-loaded hydrogel composed of GOx/AchE/urease are presented. The biocatalytic transformations within the hydrogels lead to the dictated reconfiguration of nucleic acid bridges and the switchable control over the stiffness of the respective hydrogels. The switchable stiffness features are used to develop biocatalytically guided shape-memory and self-healing matrices. In addition, loading of GOx/insulin in a pH-responsive DNA-based hydrogel yields a glucose-triggered matrix for the controlled release of insulin, acting as an artificial pancreas. The release of insulin is controlled by the concentrations of glucose, hence, the biocatalytic insulin-loaded hydrogel provides an interesting sense-and-treat carrier for controlling diabetes.

Biocatalytic control over the stiffness of pH-responsive hydrogels is applied to develop shape-memory, self-healing and controlled release matrices.  相似文献   
9.
10.
An electroswitchable and tunable biofuel cell based on the biocatalyzed oxidation of glucose is described. The anode consists of a Cu(2+)-poly(acrylic acid) film on which the redox-relay pyrroloquinoline quinone (PQQ) and the flavin adenine dinucleotide (FAD) cofactor are covalently linked. Apo-glucose oxidase is reconstituted on the FAD sites to yield the glucose oxidase (GOx)-functionalized electrode. The cathode consists of a Cu(2+)-poly(acrylic acid) film that provides the functional interface for the covalent linkage of cytochrome c (Cyt c) that is further linked to cytochrome oxidase (COx). Electrochemical reduction of the Cu(2+)-poly(acrylic acid) films (applied potential -0.5 V vs SCE) associated with the anode and cathode yields the conductive Cu(0)-poly(acrylic acid) matrixes that electrically contact the GOx-electrode and the COx/Cyt c-electrode, respectively. The short-circuit current and open-circuit voltage of the biofuel cell correspond to 105 microA (current density ca. 550 microA cm(-2)) and 120 mV, respectively, and the maximum extracted power from the cell is 4.3 microW at an external loading resistance of 1 kOmega. The electrochemical oxidation of the polymer films associated with the electrodes (applied potential 0.5 V) yields the nonconductive Cu(2+)-poly(acrylic acid) films that completely block the biofuel cell operation. By the cyclic electrochemical reduction and oxidation of the polymer films associated with the anode and cathode between the Cu(0)-poly(acrylic acid) and Cu(2+)-poly(acrylic acid) states, the biofuel cell performance is reversibly switched between "ON" and "OFF" states, respectively. The electrochemical reduction of the Cu(2+)-polymer film to the Cu(0)-polymer film is a slow process (ca. 1000 s) because the formation and aggregation of the Cu(0)-clusters requires the migration of Cu(2+) ions in the polymer film and their reduction at conductive sites. The slow reduction of the Cu(2+)-polymer films allows for the controlling of the content of conductive domains in the films and the tuning of the output power of the biofuel cell. The electron-transfer resistances of the cathodic and anodic processes were characterized by impedance spectroscopy. Also, the overall resistances of the biofuel cell generated by the time-dependent electrochemical reduction process were followed by impedance spectroscopy and correlated with the internal resistances of the cell upon its operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号