首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   24篇
化学   529篇
力学   9篇
数学   66篇
物理学   146篇
  2023年   8篇
  2022年   22篇
  2021年   16篇
  2020年   17篇
  2019年   10篇
  2018年   20篇
  2017年   15篇
  2016年   25篇
  2015年   19篇
  2014年   27篇
  2013年   35篇
  2012年   35篇
  2011年   48篇
  2010年   38篇
  2009年   30篇
  2008年   50篇
  2007年   47篇
  2006年   51篇
  2005年   38篇
  2004年   34篇
  2003年   21篇
  2002年   31篇
  2001年   17篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   6篇
  1991年   6篇
  1988年   2篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1976年   3篇
  1970年   1篇
  1968年   1篇
  1967年   3篇
  1966年   2篇
  1965年   3篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
  1958年   1篇
排序方式: 共有750条查询结果,搜索用时 281 毫秒
1.
We present preliminary results on J/? production in Pb-Pb collisions at 158 GeV/nucleon, obtained in the analysis of the most recent data sample collected by NA50 experiment in year 2000. The results are compared with an updated absorption curve deduced from new high statistics protonnucleus data. The measurements reported here confirm the anomalous J/? suppression already observed by NA50 from previously collected data samples.  相似文献   
2.
3.
The effects of water molecules and quat structure are shown to be significant in determining the behavior of alkylation reactions of weakly acidic carbon acids under PTC/OH? conditions.  相似文献   
4.
Borges F  Guimarães C  Lima JL  Pinto I  Reis S 《Talanta》2005,66(3):670-673
Studies on the complexation of copper(II) by phenolic acids, as ligand models of humic substances were done by potentiometry. The acids under study were: 3,4-dihydroxyhydrocinnamic acid or hydrocaffeic acid (1), 3,4-dihydroxyphenylacetic acid (2) and 3,4-dihydroxybenzoic acid or protocatechuic acid (3). Acidity constants of the ligands and the formation constants of metal-ligand complexes were evaluated by computer programs. The carboxylic group of the phenolic acids has different pKa1 values, being the dissociation constants intrinsically related with the distance between the function and the aromatic nucleus. The results obtained allow concluding that acidity constants of the catechol moiety of the compounds are similar with pKa2 and pKa3 values between 9.47-9.41 and 11.55-11.70. The complexation properties of the three ligands towards copper(II) ion are quite similar, being the species found not different either in nature or stability. Although the model ligands have some structural differences no significant differences were found in their complexation properties towards copper(II). So, it can be postulated that complexation process is intrinsically related with the presence of a catechol group.  相似文献   
5.
6.
The anti-hyperglycemic flavonoid extract obtained from Genista tenera was first studied by liquid chromatography (LC)-diode array detection (DAD) which showed the presence of two major compounds. One of them was identified as genistein-7-O-glucoside. Luteolin-7-O-glucoside was detected as a minor constituent, while luteolin-7,3'-di-O-glucoside and rutin were found in trace amounts. LC-DAD-ESI-MS and NMR were used to confirm the structure of these compounds and allowed the elucidation of the structure of the unknown major compound, which is the flavonoid 5,7,4'-trihydroxyisoflavone-8-C-glucoside.  相似文献   
7.
Constant magnetic fields affect many biological transformations, but we lack mechanistic understanding of the processes. The magnetohydrodynamic effect may account for the enhancement of bioelectrocatalytic transformations at interfaces. This is exemplified by the bioelectrocatalyzed cytochrome c-mediated reduction of oxygen and oxidation of lactate in the presence of cytochrome oxidase and lactate dehydrogenase, respectively. We observe significant magnetic field effects on the rates of bioelectrochemical transformations (ca. 3-fold increase) at the functionalized interfaces at field strengths, B, up to 1 T. We show that the limiting current is proportional to the B(1/3)C*(4/3), where C is the concentration of electroactive species. The results may have important implications on the understanding of the magnetic field effects on natural biocatalytic processes at membranes and on the enhancement of biotransformations in biotechnology.  相似文献   
8.
The enzymes glucose oxidase (GOx), acetylcholine esterase (AchE) and urease that drive biocatalytic transformations to alter pH, are integrated into pH-responsive DNA-based hydrogels. A two-enzyme-loaded hydrogel composed of GOx/urease or AchE/urease and a three-enzyme-loaded hydrogel composed of GOx/AchE/urease are presented. The biocatalytic transformations within the hydrogels lead to the dictated reconfiguration of nucleic acid bridges and the switchable control over the stiffness of the respective hydrogels. The switchable stiffness features are used to develop biocatalytically guided shape-memory and self-healing matrices. In addition, loading of GOx/insulin in a pH-responsive DNA-based hydrogel yields a glucose-triggered matrix for the controlled release of insulin, acting as an artificial pancreas. The release of insulin is controlled by the concentrations of glucose, hence, the biocatalytic insulin-loaded hydrogel provides an interesting sense-and-treat carrier for controlling diabetes.

Biocatalytic control over the stiffness of pH-responsive hydrogels is applied to develop shape-memory, self-healing and controlled release matrices.  相似文献   
9.
10.
An electroswitchable and tunable biofuel cell based on the biocatalyzed oxidation of glucose is described. The anode consists of a Cu(2+)-poly(acrylic acid) film on which the redox-relay pyrroloquinoline quinone (PQQ) and the flavin adenine dinucleotide (FAD) cofactor are covalently linked. Apo-glucose oxidase is reconstituted on the FAD sites to yield the glucose oxidase (GOx)-functionalized electrode. The cathode consists of a Cu(2+)-poly(acrylic acid) film that provides the functional interface for the covalent linkage of cytochrome c (Cyt c) that is further linked to cytochrome oxidase (COx). Electrochemical reduction of the Cu(2+)-poly(acrylic acid) films (applied potential -0.5 V vs SCE) associated with the anode and cathode yields the conductive Cu(0)-poly(acrylic acid) matrixes that electrically contact the GOx-electrode and the COx/Cyt c-electrode, respectively. The short-circuit current and open-circuit voltage of the biofuel cell correspond to 105 microA (current density ca. 550 microA cm(-2)) and 120 mV, respectively, and the maximum extracted power from the cell is 4.3 microW at an external loading resistance of 1 kOmega. The electrochemical oxidation of the polymer films associated with the electrodes (applied potential 0.5 V) yields the nonconductive Cu(2+)-poly(acrylic acid) films that completely block the biofuel cell operation. By the cyclic electrochemical reduction and oxidation of the polymer films associated with the anode and cathode between the Cu(0)-poly(acrylic acid) and Cu(2+)-poly(acrylic acid) states, the biofuel cell performance is reversibly switched between "ON" and "OFF" states, respectively. The electrochemical reduction of the Cu(2+)-polymer film to the Cu(0)-polymer film is a slow process (ca. 1000 s) because the formation and aggregation of the Cu(0)-clusters requires the migration of Cu(2+) ions in the polymer film and their reduction at conductive sites. The slow reduction of the Cu(2+)-polymer films allows for the controlling of the content of conductive domains in the films and the tuning of the output power of the biofuel cell. The electron-transfer resistances of the cathodic and anodic processes were characterized by impedance spectroscopy. Also, the overall resistances of the biofuel cell generated by the time-dependent electrochemical reduction process were followed by impedance spectroscopy and correlated with the internal resistances of the cell upon its operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号