首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
化学   1篇
力学   1篇
物理学   3篇
  2022年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carded out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.  相似文献   
2.
We would like to acknowledge the misprinted terms in our published paper “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux” [Chin. Phys. B 23 044702 (2014)]. Since only two misprints exist and the main results of the published paper are correct, we present the correct equations in this erratum.  相似文献   
3.
4.
The aim of this paper is to present the boundary layer flow of viscous incompressible fluid due to a porous vertical stretching surface with a power-law stretching velocity in a thermally stratified medium. Using a special form of Lie group transformations viz. scaling group of transformations, similarity solutions for this problem are obtained. The equations are then solved numerically. With increasing values of the stratification parameter, the velocity as well as temperature decreases. At a particular point of the porous stretching sheet, the velocity decreases with the increasing suction parameter. The dimensionless temperature at a point of the sheet decreases due to suction but increases due to injection. The findings of this study reveal that stratification and suction can be used as means of cooling the boundary layer flow region.  相似文献   
5.
The aim of this paper is to investigate numerically the boundary layer forced convection flow of a Casson fluid past a symmetric porous wedge. Similarity transformations are used to convert the governing partial differential equations into ordinary ones. With the help of the shooting method, the reduced equations are then solved numerically. Comparisons are made with the previously published results in some special cases and they are found to be in excellent agreement with each other. The results obtained in this study are illustrated graphically and discussed in detail. The velocity is found to increase with an increasing Falkner-Skan exponent whereas the temperature decreases. With the rise of the Casson fluid parameter, the fluid velocity increases but the temperature is found to decrease in this case. Fluid velocity is suppressed with the increase of suction. The skin friction decreases with the increasing value of Casson fluid parameter. It is found that the temperature decreases as the Prandtl number increases and thermal boundary layer thickness decreases with the increasing value of Prandtl number. A significant finding of this investigation is that flow separation can be controlled by increasing the value of the Casson fluid parameter as well as by increasing the amount of suction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号