首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
化学   17篇
物理学   1篇
  2023年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
1.
2.
Coordinated N,N',N"-trimethyldiethylenetriamine (Me3dien) has several possible configurations: two have mirror symmetry (R,S configurations at the terminal nitrogens) and the terminal N-Me's anti or syn with respect to the central N-Me (anti-(R,S) and syn-(R,S) isomers, respectively), and two are nonsymmetrical (R,R and S,S configurations at terminal nitrogens, rac denotes a 1:1 mixture of the two isomers). For each configuration, two Me3dienPtG atropisomers can be formed (anti or syn orientation of central N-Me and G 06, G = guanine derivative), and these can be observed since the terminal N-Me's decrease the rate of G rotation about the Pt-N7 bond. In symmetrical syn-(R,S)-Me3dienPtG derivatives with G = 9-EtG and 3'-GMP, the anti rotamer, which can form O6-NH H-bonds, was slightly favored over the syn rotamer but never more than 2:1. This anti rotamer is also favored by lower steric repulsion between the terminal N-Me's and G O6; thus, the contribution of O6-NH H-bonding to the stability of the anti rotamer could be rather small. With G = 5'-GMP, an O6-NH H-bond in the anti rotamer and a phosphate-NH H-bond in the syn rotamer can form. Only the syn rotamer was detected in solution, indicating that NH H-bonds to 5'-phosphate are far more important than to O6, particularly since steric factors favor the anti rotamer. Interconversion between rotamers was faster for syn-(R,S)- than for rac-Me3dien derivatives. This appears to be determined by a smaller steric impediment to G rotation of two "quasi equatorial" N-Me's, both on one side of the platinum coordination plane (syn-(R,S) isomer), than one "quasi equatorial" and one "quasi axial" N-Me on either side of the coordination plane (rac isomer).  相似文献   
3.
Oxidative addition and reductive elimination are fundamental processes in transition-metal chemistry. New interest in this field has been generated by the exploitation of platinum(IV) complexes as antitumor drugs. The two extra ligands can be used to render these species more resistant to attack by biological nucleophiles compared to their platinum(II) counterparts, to anchor additional pharmacologically active moieties, or, finally, to target the drug to specific sites by conferring responsiveness to some type of chemotaxis. On the other hand, platinum(IV) species are considered to be prodrugs and to require reduction to Pt(II) to become active. Thus, reductive elimination promoted by biological reducing agents becomes an important issue and it too could be exploited for targeting purposes. In this paper, we investigated the oxidation step in more detail and shown that, independent of the solvent used, a solvent molecule assists the reaction by entering in a trans position with respect to the attacking oxidant. In the case of bifunctional solvent molecules, such as dimethylsulfoxide, both S- and O-coordinated species are formed, the latter being thermodynamically favored. The substitution of the axially coordinated solvent molecule by a free chloride ion is found to be quite slow in organic solvents, as well as in water. It is also shown that the intermediate solvato-species can be exploited for binding just one molecule of another substrate in the axial position.  相似文献   
4.
In [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane), the N-Pt-N bite angle (> or =97 degrees , as determined by X-ray diffraction analysis) is much larger than those found in other Pt complexes with bidentate diamines or in cisplatin (approximately 91 degrees ). Hence, the possibility exists that in (cis-1,4-DACH)PtG 2 adducts, rotation of the G's around the Pt-N7 bonds is slowed enough to allow observation of different conformers. In accord with this prevision, decreasing the temperature to 238 K enabled us to observe different conformers of (cis-1,4-DACH)Pt(5'-GMP) 2 (GMP = guanosine monophosphate). This observation is the first case in which such conformers for a platinum derivative with primary diamines and untethered guanines have been resolved and represents the closest model to clinically effective cisplatin obtained to date. We also found that the presence of the 1,4-DACH ligand increased the intensity of the circular dichroism signal stemming from the dominance of an HT conformer (DeltaHT in the adduct with 3'-GMPs and LambdaHT in the adduct with 5'-GMPs).  相似文献   
5.
The reactions of the anticancer complex trans-[PtCl(2)[(E)-HN==C(OMe)Me](2)] (trans-EE) with both single-stranded and double-stranded deoxyribonucleotides have been studied by HPLC and 2D [(1)H,(15)N] HMQC NMR spectroscopy and compared with those of cis-[PtCl(2)(NH(3))(2)] (cis-DDP). Reactions of trans-EE with the single-stranded oligonucleotides d(CCTCGCTCTC) and d(CCTGGTCC) proceed rapidly through solvolysis of the starting substrate and subsequent formation of G-N7/monochloro trans-EE adducts. The rate of reaction is comparable to that of formation of an adduct from trans-EE and the dinuclotide d(ApG). Quite unexpectedly, the double-helical duplexes, d(TATGGTACCATA)(2) and d(TATGGCCATA)(2), with no terminal G residues, are practically inert towards trans-EE, and only minor species (< 5 % as estimated from HPLC traces) appear during 24 h reaction time. However, the duplexes d[(CCTCGCTCTC). (GAGAGCGAGG)] and d(GATAGGCCTATC)(2), which contain both terminal and central G residues, undergo platination only at the terminal, solvent-exposed, G residues, thereby confirming that the interior of the duplex is not accessible to trans-EE due to steric hindrance. In contrast, cis-DDP was found to bind exclusively to the central GG pair in d(GATAGGCCTATC)(2).  相似文献   
6.
The synthesis and the NMR and X-ray structural characterization of a cisplatin analogue designed to reduce the Pt-N7 rotation of a coordinated guanine base by a billion times are reported. The [Pt(dmm){(+/-)-bip}] (dmm=dimethylmalonato; bip=2,2'-bipiperidine) complex crystallizes in the C2/m space group, which contemplates a mirror plane bisecting the bip and dmm ligands. Because the bip moiety (R, R or S, S configuration at the 2,2'-carbon atoms) does not have planes of symmetry, the requirements of the crystal symmetry are satisfied by a statistical disorder made of bip molecules of R, R or S, S configurations alternating at the same crystallographic site. Such an unexpected arrangement has been permitted by a "quasi planarity" of the bip ligand [maximum deviation from the mean plane through the C and N atoms of 0.2927(9) A], which allows bip molecules of different chiralities to fit in the same space. The bip array of heavy atoms is overlaid, from both sides, by a layer of "quasi axial" (C)H and (N)H atoms (six per side). Those on one side are hydrogen-bonded to the dmm oxygen atoms of another complex molecule joined in a pair. The distance between the average platinum coordination planes is as short as 3.498(1) A, comparable to those found in crystals of the [PtCl 2(bipy)] complex (bipy=2,2'-bipyridine) and of graphite, in which, however, all atoms of each unit are rigorously coplanar and there are no out-of-plane hydrogen atoms. The NMR data show a net chemical shift separation between geminal methylene protons, with the "quasi axial" protons being always at higher field with respect to the "quasi equatorial" ones. This is in accordance with a rigid bip ligand frame and the inability of the bip methylene protons adjacent to the coordinated nitrogen to rotate away from a cis-G base (G=guanine) during G rotation around the Pt-N7 bond.  相似文献   
7.
Most evidence indicates that platinum(IV) prodrugs are rapidly reduced under physiological conditions by biologically relevant reducing agents, such as ascorbic acid and glutathione; however, the precise mechanisms of reduction are not fully understood, thus preventing rational design of compounds with better pharmacological properties. In the present study, reduction of three all-trans platinum(IV) compounds of formula [PtCl(2)(CH(3)COO)(2)LL'] (LL' = {E-HN═C(CH(3))OCH(3)}(2), 1c, (H(3)N)(cyclohexylamine), 2c, and (H(3)N)(1-adamantylamine), 3c) by two biologically relevant reductants (ascorbic acid and glutathione) and by a classical coordination chemistry reductant (triphenylphosphine) has been investigated. Reduction by triphenylphosphine and glutathione leads, in all cases examined, to loss of the two chlorides and formation of the diacetato species trans-[Pt(CH(3)COO)(2)LL']. This is in accord with an "inner-sphere" redox process in which a chlorido ligand bridges the reductant with the platinum(IV) center. In contrast, reduction by ascorbic acid/sodium ascorbate 1:1 leads, in addition to the diacetato complex, also to formation of a significant amount of dichlorido species, particularly in the case of 1c (31%) and to a lesser extent of 3c (16%). The latter results indicate that ascorbic acid is less efficient to promote an inner-sphere redox process (attack on a chlorido ligand), therefore allowing participation of an "outer-sphere" mechanism, ultimately leading to formation of the more stable dichlorido species. The dependence of the yield of diacetato species upon the steric hindrance of the carrier ligand (69%, 84%, and 95% for 1c, 3c, and 2c, respectively) points to the possible participation of a second type of inner-sphere mechanism in which the interaction between the ascorbate and a chlorido ligand of the platinum(IV) substrate is mediated by a platinum(II) catalyst, the transition state resembling that of a platinum(II)-catalyzed ligand substitution at a platinum(IV) center. This investigation demonstrates that different species can be obtained by reduction of a platinum(IV) prodrug (depending upon the configuration of the substrate and the nature of the intervening reducing agent) and can explain some lack of correlation between prodrug and putative active species as well as contrasting literature results.  相似文献   
8.
Platinum anticancer drug binding to DNA creates large distortions in the cross-link (G*G*) and the adjacent XG* base pair (bp) steps (G* = N7-platinated G). These distortions, which are responsible for anticancer activity, depend on features of the duplex (e.g., base pairing) and of the cross-link moiety (e.g., the position and canting of the G* bases). The duplex structure stabilizes the head-to-head (HH) over the head-to-tail (HT) orientation and right-handed (R) over left-handed (L) canting of the G* bases. To provide fundamental chemical information relevant to the assessment of such duplex effects, we examine (S,R,R,S)-BipPt(oligo) adducts (Bip = 2,2'-bipiperidine with S,R,R,S chiral centers at the N, C, C, and N chelate ring atoms, respectively; oligo = d(G*pG*) with 3'- and/or 5'-substituents). The moderately bulky (S,R,R,S)-Bip ligand favors L canting and slows rotation about the Pt-G* bonds, and the (S,R,R,S)-BipPt(oligo) models provide more useful data than do dynamic models derived from active Pt drugs. All 5'-substituents in (S,R,R,S)-BipPt(oligo) adducts favor the normal HH conformer (~97%) by destabilizing the HT conformer through clashes with the 3'-G* residue rather than through favorable H-bonding interactions with the carrier ligand in the HH conformer. For all (S,R,R,S)-BipPt(oligo) adducts, the S pucker of the 5'-X residue is retained. For these adducts, a 5'-substituent had only modest effects on the degree of L canting for the (S,R,R,S)-BipPt(oligo) HH conformer. This small flanking 5'-substituent effect on an L-canted HH conformer contrasts with the significant decrease in the degree of R canting previously observed for flanking 5'-substituents in the R-canted (R,S,S,R)-BipPt(oligo) analogues. The present data support our earlier hypothesis that the distortion distinctive to the XG* bp step (S to N pucker change and movement of the X residue) is required for normal stacking and X·X' WC H bonding and to prevent XG* residue clashes.  相似文献   
9.
The title compound, [PtCl(C3H7NO)2(C18H15P)]Cl·H2O or trans‐[PtCl{Z‐HN=C(Me)OMe}2(PPh3)]Cl·H2O, crystallizes from an acetone solution of isomeric trans‐[PtCl{E‐HN=C(Me)OMe}2(PPh3)]Cl. The two HN=C(Me)OMe ligands show typical π‐bond delocalization over the N—C—O group [Cini, Caputo, Intini & Natile (1995). Inorg. Chem. 34 , 1130–1137] and have the unprecedented Z–anti configuration. The relative orientation of the imino ether ligands is head‐to‐tail.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号