首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
化学   14篇
物理学   6篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Dailly  A.  Schneider  R.  Billaud  D.  Fort  Y.  Ghanbaja  J. 《Journal of nanoparticle research》2003,5(3-4):389-393
A novel chemical reduction method using an activated alkaline hydride (LiH or NaH-t-BuONa) in tetrahydrofuran solvent has been applied to antimony salt reduction. X-ray diffraction and transmission electron microscopy studies have been carried out to characterize the morphology and structure of the materials. Alkali hydride nature influence has been proved. In both cases the process allows to prepare antimony particles in nanometer range from few nanometers to about 20nm which could be used as anodic materials for lithium–ion batteries. With lithium hydride well-crystallized particles inclined to agglomeration were observed whereas finely dispersed amorphous particles were pointing out after activated sodium hydride reduction.  相似文献   
2.
A novel route to prepare polyaniline (PANI)‐supported Pd(0) nanoparticles by a one‐pot chemical route is presented. Nanosized Pd(0) particles were first prepared by reduction of Pd(OAc)2 using t‐BuONa activated sodium hydride in refluxing THF. A ligand exchange with aniline on t‐BuONa‐stabilized Pd(0) particles yielded aniline‐stabilized particles. Pd(0)/PANI nanocomposites were finally obtained by polymerizing aniline‐stabilized Pd(0) particles using ammonium persulfate. Nanocomposites were characterized by transmission electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. Results show that this one‐pot experimental route is successful in producing hybrid materials constituted of Pd(0) nanoparticles stabilized by PANI due to the strong binding of PANI amine groups to Pd(0) particles. TEM images of the nanohybrids show that metal particles with diameters of ca. 4.9 nm are homogeneously dispersed in PANI. The preliminary results indicate that the Pd(0) particles supported on PANI behave as efficient heterogeneous catalysts in the Heck and Suzuki–Miyaura reactions of aryl iodides. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
3.
4.
Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine   总被引:1,自引:0,他引:1  
We have studied bimetallic Ni-Ag (Ni + Ag = 1 wt%) catalysts supported on crystallized silica and prepared by aqueous chemical reduction with hydrazine at 353 K. Two protocols of reduction were used. Prepared catalysts were characterized by means of XRD, TEM, STEM, H2 chemisorption and H2-TPD. Their catalytic activity was studied in the gas-phase hydrogenation of benzene. The most important feature of the results obtained is the synergistic effect between Ni and Ag which led to improvement of dispersion and reactivity of nickel in the presence silver for precipitated catalysts. Silver is inactive in the test-reaction. Precipitated bimetallic catalysts give rise to total conversion from 373 K, a temperature at which conversion hardly reaches 30% for the impregnated catalysts. Dispersion and activity pass through a maximum of monotonically decrease with precipitated and impregnated catalysts, respectively. Deactivation was observed for bimetallic catalysts, particularly with precipitated samples. These results could be explained by the mechanism of metal reduction in the hydrazine media. As a result, various Ni-Ag species formed where Ni and Ag phases were separated clusters or interacted as heteroatomic groupings on the carrier surface. These grouping would be responsible of the high performances of the precipitated catalysts.  相似文献   
5.
The dechlorination of alkyl and aryl (poly)chlorides is rapid and complete upon treatment with a new reduction system consisting of NaH as reagent, Ni–Al clusters as catalyst and t‐BuOH as catalytic co‐factor. The high efficiency of this combination is presumed to be due to the stabilization of the subnanometre nickel particles formed during reduction by the in‐situ‐generated alkoxide. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
6.
Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time on the optical properties of ZnSe:Mn nanocrystals. Using 3-mercaptopropionic acid as capping ligand afforded 3.1 nm wide ZnSe:Mn quantum dots (QDs) with very low surface defect density and which exhibited the Mn(2+)-related orange luminescence. The post-preparative introduction of a ZnS shell at the surface of the Mn(2+)-doped ZnSe QDs improved their photoluminescence properties, resulting in stronger emission. A 2.5-fold increase in photoluminescence quantum yield (from 3.5 to 9%) and of Mn(2+) ion emission lifetime (from 0.62 to 1.39 ms) have been observed after surface passivation. The size and the structure of these QDs were also corroborated by using transmission electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction.  相似文献   
7.
Hydroxysulphate green rust species were precipitated in the presence of various anions. is stable at ∼pH 7 and is transformed into a mixture of magnetite and ferrous hydroxide when the pH raised at ∼12. In the presence of carbonate species, is partially transformed into a mixture of magnetite and siderite at ∼pH 8.5. This transformation is stopped when silicate anions are present in the solution. As already observed for phosphate anions, the adsorption of silicate anions on the lateral faces of the crystals may explain this stabilization effect. Sulphate anions are easily exchanged by carbonate species at ∼pH 10.5. In contrast, anionic exchange between sulphate and phosphate anions was not observed.  相似文献   
8.
Synthesis of aluminium-containing nanoparticles (NPs) by electrical discharges was performed in three dielectric liquids (heptane, liquid nitrogen and water) with aluminium electrodes. The nature of the liquid plays an essential role in the synthesis yield and in the structural properties of NPs. Time-resolved optical emission spectroscopy of selected emission lines emitted during the discharge and its time afterglow was used to observe the chemical changes occurring in the gas phase. It turns out that in heptane and liquid nitrogen, crystalline metallic NPs (from 5 to 10 nm in diameter) are synthesized and oxidized next into amorphous alumina when they are in contact with air, once the liquid is evaporated. In heptane, the transformation of the liquid itself into hydrogenated amorphous carbon creates a kind a matrix in which the aluminium NPs are embedded. Sometimes, a protective graphite shell grows around the NPs and protects them from any further oxidation. In water, these crystalline metallic NPs are synthesized during the first 800 ns of the discharge process, when oxidation is limited by the outward flux of the metallic vapour. They are oxidized next in water. A second type of alumina NPs (several 10 s of nm in diameter) are produced from 800 ns on. They are likely formed from AlO molecules and no longer from aluminium atoms. In every liquid, sub-micrometric particles are also found due to droplet emission from the liquid well created during impacts of spark discharges on electrodes.  相似文献   
9.
Takovites are nickel-based layered double hydroxides (LDH) with a general formula that can be written as Ni(1-x)Al(x)(OH)2, A(z-)(x/z), yH(2)O, where A is a compensating interlayer anion. As in some other LDH samples, the positive charge of the layer can be adjusted upon synthesis and various anions can be exchanged in the interlayer region. It is then important to understand the synthesis pathway of these materials. We then undertook a study on the hydrolytic behavior of pure Ni salts and mixtures of Ni and Ga salts. This paper focuses on the hydrolysis of Ni(2+) and Ga(3+) ions, together in solution, carried out by base addition. The samples will be defined by their hydrolysis ratio R = [OH(-)]/([Ni(2+)] + [Ga(3+)]). Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used to obtain information on the colloidal species size and shape on a large scale. Each hydrolyzed sample was also studied by Ni K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS) to obtain information on the local structure of the species in suspension. SAXS curves reveal the presence of bidimensional objects whatever the R values. The platelets formed for R values >/=1.1 are slightly thicker and smaller in size, which may be linked to their different natures. Complementary information is provided by TEM analysis: the first colloids formed have a structure very close to that of alpha-GaOOH, as shown by electronic diffraction. Those structures are progressively replaced by Ni-Ga LDH platelets with increasing hydrolysis ratio, which are the only species in suspension for R = 2.0, as shown by XRD. EXAFS results confirm the complete hydrolysis of gallium before the formation of Ni-Ga LDH phases.  相似文献   
10.
The present paper focuses on the direct synthesis of NiGa layered double hydroxides (LDHs) by concomitant addition of Ni and Ga chloride in solution with NaOH solution, at a constant pH value of 6.5. Various Ni/Ga ratios (Ni/Ga = 2, Ni/Ga = 4, or Ni/Ga = 6) were investigated, and samples were collected after successive additions. Each sample was then analyzed by small-angle X-ray scattering (SAXS) to derive information about the shape of the objects formed upon synthesis. In parallel Ni K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS) analysis were carried out on relevant samples to obtain information on the local structure of the species in suspension. SAXS curves reveal significant changes. At the beginning of the synthesis, for low added volumes (V(s)), the suspension appears to contain both monodimensional and bidimensional objects. For higher V(s), the monodimensional objects disappear and only platelike particles are detected in the suspension. EXAFS results show that all the added gallium atoms are involved in a solid Ni-Ga LDH phase throughout the whole synthesis. In contrast, some nickel cations do not precipitate in the Ni-Ga LDH. At the beginning of the synthesis, for low added volumes they are also involved in the formation of fibrous polycations. For higher added volumes, the fibers are not observed anymore and monomeric nickel species are then present in the suspension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号