首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   5篇
  国内免费   2篇
化学   177篇
晶体学   3篇
力学   1篇
数学   56篇
物理学   100篇
  2023年   4篇
  2022年   10篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   3篇
  2016年   8篇
  2015年   3篇
  2014年   8篇
  2013年   15篇
  2012年   9篇
  2011年   12篇
  2010年   4篇
  2009年   13篇
  2008年   8篇
  2007年   14篇
  2006年   20篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   10篇
  2001年   15篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1996年   11篇
  1994年   11篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1988年   3篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1978年   5篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1960年   3篇
  1917年   2篇
  1912年   2篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
1.
2.
We study property (T) and the fixed-point property for actions on L p and other Banach spaces. We show that property (T) holds when L 2 is replaced by L p (and even a subspace/quotient of L p ), and that in fact it is independent of 1≤p<∞. We show that the fixed-point property for L p follows from property (T) when 1<p< 2+ε. For simple Lie groups and their lattices, we prove that the fixed-point property for L p holds for any 1< p<∞ if and only if the rank is at least two. Finally, we obtain a superrigidity result for actions of irreducible lattices in products of general groups on superreflexive spaces. Bader partially supported by ISF grant 100146; Furman partially supported by NSF grants DMS-0094245 and DMS-0604611; Gelander partially supported by NSF grant DMS-0404557 and BSF grant 2004010; Monod partially supported by FNS (CH) and NSF (US).  相似文献   
3.
We do the tentative beginnings of a study of BLT-sets of generalised quadrangles via their symmetries. In particular, the study of whorls about a line leads us to hyperbolic reflections preserving a BLT-set of Q(4, q).  相似文献   
4.
5.
6.
7.
Two different macrospopic pieces of copper have different external potentials and, because of the unique functional relationship between the electron density and the external potential as demanded by density functional theory, should possess different electron density distributions. Experimentally, however, an atom in the bulk exhibits the same electron density in both samples and they possess identical sets of intensive properties. Density functional theory does not account for the fundamental observation underlying the theory of atoms in molecules: that what are apparently identical distributions of charge can be observed for an atom or a grouping of atoms in systems with different external potentials and that these atoms contribute essentially identical amounts to the energies and all other properties of the systems in which they occur. It is shown that, unlike the external potential, the kinetic energy density and the potential energy density, defined by the virial of the Ehrenfest force acting on electron density, are short-range functions. As recorded in the first article on atoms in molecules, they exhibit a local dependence on the electron density that causes them to faithfully mimic the transferability of the atomic charge distributions from one system to another. The electron, the kinetic energy, and the virial densities are all determined directly by the one-electron density matrix, a function termed near-sighted by Professor Kohn. It is this near-sighted property of the one-matrix that underlies the working hypothesis of chemistry—that of a functional group exhibiting a characteristic set of properties. The observations obtained from the theory of atoms in molecules and the atomic theorems it determines demonstrate the existence of a local relationship between the electron density and all properties of a system. © 1995 John Wiley & Sons, Inc.  相似文献   
8.
It is the purpose of this review to demonstrate that the empirical classification of the observations of chemistry in terms of the properties assigned to functional groups is a consequence of and is predicted by physics. This is accomplished by showing that the atoms and functional groups of chemistry can be identified with bounded space-filling objects whose properties are defined by quantum mechanics. The quantum mechanical definition of a group is combined with a new pictorial representation of its form to obtain a unified picture which should make it eminently recognizable to chemists. This picture, when combined with the demonstrated ability of these groups to recover the measured properties of atoms in molecules, is offered as one which meets the expectations a chemist associates with the concept of a functional group. The manner in which this physical definition of a group differs fundamentally from models of functional groups based upon molecular orbital theory is discussed.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号