首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 156 毫秒
1
1.
The thermochemical behaviour of sugars (D- and DL-arabinose, D- and DL-xylose and D-mannose) and sugar alcohol (D- and DL-arabinitol) was investigated by TG and pyrolysis-gas chromatography with mass-selective detection (Py-GC/MSD). The temperature of pyrolysis was 500 and 550°C. The TG-curves were measured both in air and nitrogen atmospheres, from 25 to 700°C with the heating rate of 2°C min-1. In each case, the main pyrolysis products were classified into the following compound groups: (i) furanes, (ii) pyranes, (iii) cyclopentanes, (iv) cyclohexanes, (v) anhydroglucopyranoses, (vi) dianhydroglucopyranoses and (vii) saturated fatty acids. For example, the main peaks of the chromatograms of pentoses (arabinose, xylose), hexose (mannose) and sugar alcohols (arabinitols) were different. The greatest peak of pentoses in gas-chromatogram was 2-furancarboxaldehyde and that of hexose was (2H)-furan-3-one. The greatest peak of arabinitols at pyrolysis temperature of 500°C was furan methanol and at 550°C a-angeligalactone. 5-hydroxymethyl-2-furan carboxaldehyde was found only in the pyrolysis of D-mannose (hexose). The former study showed that it was not found in pyrolysis of pentoses. The amount of CO2 and H2O was not determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Summary Anhydrous lactitols (A1, α- and β-lactitol), lactitol monohydrate, lactitol dihydrate and lactitol trihydrate were kept for varying times in atmospheres of different relative humidity at 20°C in equivalent size plastic desiccators. The relative humidities (8-95%) were maintained with saturated salt solutions and drying agents (silica gel and phosphorous pentoxide). The composition of the samples was monitored by thermogravimetry, differential scanning calorimetry and X-ray powder diffraction. According to these measurements both lactitol monohydrate and lactitol dihydrate were substantially stable under the conditions used. Lactitol monohydrate converts to lactitol dihydrate at the highest relative humidity used. All phases of anhydrous lactitol convert into a form of lactitol monohydrate but not to lactitol dihydrate, even at the highest relative humidity used. At a high relative humidity lactitol trihydrate easily loses part of its crystal water and converts partly to lactitol dihydrate. At a lower relative humidity, the phase forming from trihydrate is difficult to identify.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号