首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   15篇
物理学   2篇
  2012年   3篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1992年   1篇
  1988年   1篇
  1927年   1篇
  1926年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Kinetic isotope effects in the nucleophile and leaving group were obtained for the reaction of p-nitrophenyl phosphate monoester coordinated to a dinuclear Co(III) complex. The metal complex of the p-nitrophenyl phosphate monoester was found to hydrolyze by a single-step concerted mechanism, with significant nucleophilic participation in the transition state. By contrast, the hydrolysis of uncomplexed p-nitrophenyl phosphate occurs by a very loose transition state with little bond formation to the nucleophile. Previously, the metal complex of the diester methyl-p-nitrophenyl phosphate was found to hydrolyze via a two-step addition-elimination mechanism, in contrast to the concerted hydrolysis mechanism followed by uncomplexed diesters with the p-nitrophenolate leaving group. These results show that coordination to a metal complex can significantly alter the mechanism of phosphoryl transfer.  相似文献   
2.
Isotope effects in the nucleophile and in the leaving group were measured to gain information about the mechanism and transition state of the hydrolysis of methyl p-nitrophenyl phosphate complexed to a dinuclear cobalt complex. The complexed diester undergoes hydrolysis about 1011 times faster than the corresponding uncomplexed diester. The kinetic isotope effects indicate that this rate acceleration is accompanied by a change in mechanism. A large inverse 18O isotope effect in the bridging hydroxide nucleophile (0.937 +/- 0.002) suggests that nucleophilic attack occurs before the rate-determining step. Large isotope effects in the nitrophenyl leaving group (18Olg = 1.029 +/- 0.002, 15N = 1.0026 +/- 0.0002) indicate significant fission of the P-O ester bond in the transition state of the rate-determining step. The data indicate that in contrast to uncomplexed diesters, which undergo hydrolysis by a concerted mechanism, the reaction of the complexed diester likely proceeds via an addition-elimination mechanism. The rate-limiting step is expulsion of the p-nitrophenyl leaving group from the intermediate, which proceeds by a late transition state with extensive bond fission to the leaving group. This represents a substantial change in mechanism from the hydrolysis of uncomplexed aryl phosphate diesters.  相似文献   
3.
The response of a C60 molecule to manipulation across a surface displays a long range periodicity which corresponds to a rolling motion. A period of three or four lattice constants is observed and is accompanied by complex subharmonic structure due to molecular hops through a regular, repeating sequence of adsorption states. Combining experimental data and ab initio calculations, we show that this response corresponds to a rolling motion in which two of the four Si-C60 covalent bonds act as a pivot over which the molecule rotates while moving through one lattice constant and identify a sequence of C60 bonding configurations that accounts for the periodic structure.  相似文献   
4.
Two donor–acceptor molecular tweezers incorporating the 10‐(1,3‐dithiol‐2‐ylidene)anthracene unit as donor group and two cyanoacrylic units as accepting/anchoring groups are reported as metal‐free sensitizers for dye‐sensitized solar cells. By changing the phenyl spacer with 3,4‐ethylenedioxythiophene (EDOT) units, the absorption spectrum of the sensitizer is red‐shifted with a corresponding increase in the molar absorptivity. Density functional calculations confirmed the intramolecular charge‐transfer nature of the lowest‐energy absorption bands. The new dyes are highly distorted from planarity and are bound to the TiO2 surface through the two anchoring groups in a unidentate binding form. A power‐conversion efficiency of 3.7 % was obtained with a volatile CH3CN‐based electrolyte, under air mass 1.5 global sunlight. Photovoltage decay transients and ATR‐FTIR measurements allowed us to understand the photovoltaic performance, as well as the surface binding, of these new sensitizers.  相似文献   
5.
6.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   
7.
Biocompatible surfactants for water-in-fluorocarbon emulsions   总被引:1,自引:0,他引:1  
Drops of water-in-fluorocarbon emulsions have great potential for compartmentalizing both in vitro and in vivo biological systems; however, surfactants to stabilize such emulsions are scarce. Here we present a novel class of fluorosurfactants that we synthesize by coupling oligomeric perfluorinated polyethers (PFPE) with polyethyleneglycol (PEG). We demonstrate that these block copolymer surfactants stabilize water-in-fluorocarbon oil emulsions during all necessary steps of a drop-based experiment including drop formation, incubation, and reinjection into a second microfluidic device. Furthermore, we show that aqueous drops stabilized with these surfactants can be used for in vitro translation (IVT), as well as encapsulation and incubation of single cells. The compatability of this emulsion system with both biological systems and polydimethylsiloxane (PDMS) microfluidic devices makes these surfactants ideal for a broad range of high-throughput, drop-based applications.  相似文献   
8.
We have investigated the coadsorption of perylene tetracarboxylic dianhydride (PTCDA) and tetraaminobenzene (TAB) on the Ag/Si(111)-square root(3) x square root(3) R30 degree surface using scanning tunneling microscopy. At room temperature, PTCDA islands with square and herringbone ordering are formed which, on exposure to TAB, are converted into an intermixed phase in which PTCDA and TAB form alternating rows. From our images, we determine the relative placement of TAB and PTCDA molecules and conclude that the row structure is stabilized by hydrogen bonding between dianhydride and diamine groups. We confirm that this hydrogen bonding junction is stable using ab initio calculations and show that the proposed geometry is consistent with calculated intermolecular dimensions.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号