首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66910篇
  免费   13835篇
  国内免费   5930篇
化学   63589篇
晶体学   945篇
力学   2180篇
综合类   443篇
数学   5822篇
物理学   13696篇
  2024年   63篇
  2023年   511篇
  2022年   877篇
  2021年   1224篇
  2020年   2347篇
  2019年   3603篇
  2018年   2008篇
  2017年   1705篇
  2016年   4613篇
  2015年   4811篇
  2014年   5016篇
  2013年   6384篇
  2012年   5643篇
  2011年   5088篇
  2010年   4933篇
  2009年   4713篇
  2008年   4506篇
  2007年   3678篇
  2006年   3267篇
  2005年   3217篇
  2004年   2670篇
  2003年   2414篇
  2002年   3163篇
  2001年   2283篇
  2000年   2070篇
  1999年   1036篇
  1998年   530篇
  1997年   448篇
  1996年   441篇
  1995年   374篇
  1994年   364篇
  1993年   286篇
  1992年   276篇
  1991年   239篇
  1990年   205篇
  1989年   166篇
  1988年   149篇
  1987年   122篇
  1986年   116篇
  1985年   144篇
  1984年   105篇
  1983年   77篇
  1982年   93篇
  1981年   76篇
  1980年   69篇
  1979年   65篇
  1978年   64篇
  1977年   53篇
  1976年   51篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
Zhang  Hongchi  Liu  Rui  Li  Hui  Yang  Yang  Zhou  Feng 《Chemistry of Natural Compounds》2022,58(3):541-544
Chemistry of Natural Compounds -  相似文献   
3.

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC–MS/LC–MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of???7.274 and???5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020–3 has demonstrated better stability in the ligand–receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.

Graphic abstract
  相似文献   
4.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
5.
Let p ∈ [1, ∞), q ∈ [1, ∞), α∈ R, and s be a non-negative integer. Inspired by the space JNp introduced by John and Nirenberg(1961) and the space B introduced by Bourgain et al.(2015), we introduce a special John-Nirenberg-Campanato space JNcon(p,q,s) over Rn or a given cube of R;with finite side length via congruent subcubes, which are of some amalgam features. The limit space of such spaces as p →∞ is just the Campanato space which coincides with the space BMO(the space of functions with bounded mean oscillations)when α = 0. Moreover, a vanishing subspace of this new space is introduced, and its equivalent characterization is established as well, which is a counterpart of the known characterization for the classical space VMO(the space of functions with vanishing mean oscillations) over Rn or a given cube of Rn with finite side length.Furthermore, some VMO-H1-BMO-type results for this new space are also obtained, which are based on the aforementioned vanishing subspaces and the Hardy-type space defined via congruent cubes in this article. The geometrical properties of both the Euclidean space via its dyadic system and congruent cubes play a key role in the proofs of all these results.  相似文献   
6.
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air−water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN−4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN−4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN−4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.  相似文献   
7.
Jin  Zhuochen  Cao  Nan  Shi  Yang  Wu  Wenchao  Wu  Yingcai 《显形杂志》2021,24(2):349-364
Journal of Visualization - The increasing availability of spatiotemporal data provides unprecedented opportunities for understanding the structure of an urban area in terms of people’s...  相似文献   
8.
We studied the ring opening of propylene oxide (PO) by salen-M coordinated OH group [M = Al(III), Sc(III), Cr(III), Mn(III), Fe(III), Co(II), Co(III), Ni(II), Cu(II), Zn(II), Ru(III) and Rh(III)]. The results show that the ring-opening energy barriers for M(II) complexes are much lower than those with M(III) complexes in the gas phase, and the barriers correlate linearly with the negative charges on the OH group and the Fukui function condensed on the OH group. The nucleophilicity ordering in the gas phase can be rationalized by the ratio of formal positive charges/radius of M cations. Solvent effect greatly increases the barriers of M(II) complexes but slightly changes the results of M(III) ones, making the barriers similar. Analysis indicates that the reaction heats are linearly proportional to the reverse reaction barriers. The relationships established here can be used to estimate the ring-opening barriers and to screen epoxide ring-opening catalysts.  相似文献   
9.
10.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号