首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2022年   1篇
  2012年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
The essential oils from different aerial parts of Lonicera japonica have been extracted by hydro-distillation and analyzed by gas chromatography and gas chromatography coupled with mass spectrometry. Quantitative and qualitative differences were found between the analyzed plant parts. A total of eighty-nine compounds were identified. The main constituents were (Z,Z)-farnesole (16.2%) and linalool (11.0%) for the flowers fraction, hexadecanoic acid (16.0%) and linalool (8.7%) for the leaves fraction, and hexadecanoic acid (31.4%) for the stems. Monoterpene hydrocarbons were absent from all the oils, and oxygenated sesquiterpenes were not identified in the essential oil of the stem.  相似文献   
3.
4.
The catalyzed hydroboration of vinyl arenes was carried out using pinacol borane instead of catechol borane, as the former reagent and the product boronates are significantly easier to handle. By careful choice of catalyst, either the branched or the linear product can be obtained in greater than 96% selectivity. Interestingly, common ligands such as BINAP and Josiphos give opposite asymmetric induction with pinacol borane as compared with catechol borane, while P,N-ligands such as Quinap gave the same sense of induction. The hydroboration of 6-methoxynaphthalene proceeded with the greatest regio- (95:5) and enantioselectivity (94:6) of all vinyl arenes examined. The hydroboration product was then employed in a concise synthesis of the nonsteroidal antiinflammatory agent, Naproxen.  相似文献   
5.
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. One of the producers of AFB1 is Aspergillus flavus. Therefore, its rapid identification plays a key role in various sectors of the food and feed industry. MALDI-TOF mass spectrometry is one of the fastest and most accurate methods today. Therefore, the aim of this research was to develop the rapid identification of producing and non-producing strains of A. flavus based on the entire mass spectrum. To accomplish the main goal a different confirmatory MALDI-TOF MS and TLC procedures such as direct AFB1 identification by scraping from TLC plates, A. flavus mycelium, nutrient media around A. flavus growth, and finally direct AFB1 identification from infected wheat and barley grains had to be conducted. In this experiment, MALDI-TOF mass spectrometry with various modifications was the main supporting technology. All confirmatory methods confirmed the presence of AFB1 in the samples of aflatoxin-producing strains of A. flavus and vice versa; AFB1 was not detected in the case of non-producing strains. Entire mass spectra (from 2 to 20 kDa) of aflatoxin-producing and non-producing A. flavus strains were collected, statistically analyzed and clustered. An in-depth analysis of the obtained entire mass spectra showed differences between AFB1-producing and non-producing strains of A. flavus. Statistical and cluster analysis divided AFB1-producing and non-producing strains of A. flavus into two monasteries. The results indicate that it is possible to distinguish between AFB1 producers and non-producers by comparing the entire mass spectra using MALDI-TOF MS. Finally, we demonstrated that if there are established local AFB1-producing and non-producing strains of A. flavus, the entire mass spectrum database identification of aflatoxigenic A. flavus strains can be even faster and cheaper, without the need to identify the toxin itself.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号