首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   5篇
化学   15篇
物理学   7篇
  2023年   3篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d-band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 μg mgcat−1 h−1 under ambient conditions. The strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron-deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by >44-fold compared to without ZIF (ca. 1 %). The Pt/Au-NZIF interaction is key to enable strong N2 adsorption over H atom.  相似文献   
2.
We demonstrate the fabrication of graphene liquid marbles as photothermal miniature reactors with precise temperature control for reaction kinetics modulation. Graphene liquid marbles show rapid and highly reproducible photothermal behavior while maintaining their excellent mechanical robustness. By tuning the applied laser power, swift regulation of graphene liquid marble’s surface temperature between 21–135 °C and its encapsulated water temperature between 21–74 °C are demonstrated. The temperature regulation modulates the reaction kinetics in our graphene liquid marble, achieving a 12‐fold superior reaction rate constant for methylene blue degradation than at room temperature.  相似文献   
3.
Molecular‐level airborne sensing is critical for early prevention of disasters, diseases, and terrorism. Currently, most 2D surface‐enhanced Raman spectroscopy (SERS) substrates used for air sensing have only one functional surface and exhibit poor SERS‐active depth. “Aerosolized plasmonic colloidosomes” (APCs) are introduced as airborne plasmonic hotspots for direct in‐air SERS measurements. APCs function as a macroscale 3D and omnidirectional plasmonic cloud that receives laser irradiation and emits signals in all directions. Importantly, it brings about an effective plasmonic hotspot in a length scale of approximately 2.3 cm, which affords 100‐fold higher tolerance to laser misalignment along the z‐axis compared with 2D SERS substrates. APCs exhibit an extraordinary omnidirectional property and demonstrate consistent SERS performance that is independent of the laser and analyte introductory pathway. Furthermore, the first in‐air SERS detection is demonstrated in stand‐off conditions at a distance of 200 cm, highlighting the applicability of 3D omnidirectional plasmonic clouds for remote airborne sensing in threatening or inaccessible areas.  相似文献   
4.
In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.  相似文献   
5.
The production of green hydrogen through photocatalytic water splitting is crucial for a sustainable hydrogen economy and chemical manufacturing. However, current approaches suffer from slow hydrogen production (<70 μmol ⋅ gcat−1 ⋅ h−1) due to the sluggish four-electrons oxygen evolution reaction (OER) and limited catalyst activity. Herein, we achieve efficient photocatalytic water splitting by exploiting a multifunctional interface between a nano-photocatalyst and metal–organic framework (MOF) layer. The functional interface plays two critical roles: (1) enriching electron density directly on photocatalyst surface to promote catalytic activity, and (2) delocalizing photogenerated holes into MOF to enhance OER. Our photocatalytic ensemble boosts hydrogen evolution by ≈100-fold over pristine photocatalyst and concurrently produces oxygen at ideal stoichiometric ratio, even without using sacrificial agents. Notably, this unique design attains superior hydrogen production (519 μmol ⋅ gcat−1 ⋅ h−1) and apparent quantum efficiency up to 13-fold and 8-fold better than emerging photocatalytic designs utilizing hole scavengers. Comprehensive investigations underscore the vital role of the interfacial design in generating high-energy photoelectrons on surface-degenerate photocatalyst to thermodynamically drive hydrogen evolution, while leveraging the nanoporous MOF scaffold as an effective photohole sink to enhance OER. Our interfacial approach creates vast opportunities for designing next-generation, multifunctional photocatalytic ensembles using reticular chemistry with diverse energy and environmental applications.  相似文献   
6.
Miniaturized liquid–liquid interfacial reactors offer enhanced surface area and rapid confinement of compounds of opposite solubility, yet they are unable to provide in situ reaction monitoring at a molecular level at the interface. A picoreactor operative at the liquid–liquid interface is described, comprising plasmonic colloidosomes containing Ag octahedra strategically assembled at the water‐in‐decane emulsion interface. The plasmonic colloidosomes isolate ultrasmall amounts of solutions (<200 pL), allowing parallel monitoring of multiple reactions simultaneously. Using the surface‐enhanced Raman spectroscopy (SERS) technique, in situ monitoring of the interfacial protonation of dimethyl yellow (p‐dimethylaminoazobenzene (DY)) is performed, revealing an apparent rate constant of 0.09 min?1 for the first‐order reaction. The presence of isomeric products with similar physical properties is resolved, which would otherwise be indiscernible by other analytical methods.  相似文献   
7.
A new approach to the simultaneous measurement of refractive index and thickness based on the focus shifts of a convergent beam intercepted by a test plate is proposed. By using ray optics, a defined focus shift can be derived as a function of the refractive index and thickness as well as the angular position of the test plate with respect to the optical axis. From a pair of focus shifts obtained at two different angular positions, it is shown that the desired measurands can be simultaneously determined without prior knowledge of either parameter. A simulation result for the proposed concept based on graphically solving the equations of their respective focus shifts is presented.  相似文献   
8.
新颖的环状“烯-二炔”抗癌抗菌素包括calicheamicins、esperamieins、dynemicins、新制癌菌素发色团和kedarcidin发色团。对这些抗癌抗菌素的发现、结构、生物活性、抗癌作用机制及合成研究进行了概述。参考文献84篇。  相似文献   
9.
Dong Y  He H  Hu W  Li Z  Wang Q  Kuang W  Cheng TH  Wen YJ  Wang Y  Lu C 《Optics letters》2007,32(7):745-747
We realize a novel photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer. A near-linear phase shifter exceeding 180 degrees and a phase modulation with 2.5 Gbit/s baseband signal are obtained for a 10 GHz microwave signal by this proposed device.  相似文献   
10.
Inspired by aphids, liquid marbles have been studied extensively and have found application as isolated microreactors, as micropumps, and in sensing. However, current liquid‐marble‐based sensing methodologies are limited to qualitative colorimetry‐based detection. Herein we describe the fabrication of a plasmonic liquid marble as a substrate‐less analytical platform which, when coupled with ultrasensitive SERS, enables simultaneous multiplex quantification and the identification of ultratrace analytes across separate phases. Our plasmonic liquid marble demonstrates excellent mechanical stability and is suitable for the quantitative examination of ultratrace analytes, with detection limits as low as 0.3 fmol, which corresponds to an analytical enhancement factor of 5×108. The results of our simultaneous detection scheme based on plasmonic liquid marbles and an aqueous–solid–organic interface quantitatively tally with those found for the individual detection of methylene blue and coumarin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号