首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   5篇
化学   74篇
数学   1篇
物理学   19篇
  2023年   1篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   2篇
  2016年   6篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   8篇
  2005年   14篇
  2004年   9篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有94条查询结果,搜索用时 352 毫秒
1.
The beta(1-->4) glycosidic linkage found in lactose is a prevalent structural motif in many carbohydrates and glycoconjugates. Using UV and IR ion-dip spectroscopies to probe benzyl lactoside isolated in the gas phase, we find that the disaccharide unit adopts only a single, rigid structure. Its fully resolved infrared ion-dip spectrum is in excellent agreement with that of the global minimum structure computed ab initio. This has glycosidic torsion angles of phi(H) (H1-C1-O-C4') approximately 180 degrees and psi(H) (C1-O-C4'-H4') approximately 0 degrees which correspond to a rotation of approximately 150 degrees about the glycosidic bond compared to the accepted solution-phase conformation. We discuss the biological implications of this discovery and the generality of the strategies employed in making it.  相似文献   
2.
Infrared spectra were recorded for a series of gas-phase Cr+ complexes using infrared multiphoton dissociation (IRMPD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The functionalized aromatic ligands (acetophenone, anisole, aniline, and dimethyl aniline) offer a choice of either aromatic ring-pi or n-donor-base binding sites. Use of the FELIX free electron laser light source allowed convenient, rapid scanning of the chemically informative wavelength range from approximately 500 to 1800 cm(-1), which in many cases characterized the preferred site of metal binding, as well as the electronic spin state of the complex. Mono-complex ions, Cr+(ligand), for anisole, aniline, and dimethyl aniline and bis-complex ions, Cr+(ligand)(2), for anisole, aniline, and acetophenone were produced by ligand attachment to laser-desorbed Cr+ ions in the FT-ICR cell. The photodissociation yields plotted as a function of wavelength were interpreted as approximations to the infrared absorption spectra and were compared with computed spectra of different possible geometries and spin states. Clear-cut diagnostic features in the spectra of the acetophenone, anisole, and aniline complexes showed the sites of Cr+ attachment to be the carbonyl oxygen site for acetophenone (bis-complex) and the ring-pi site for anisole and aniline (both mono- and bis-complexes). The bis-complexes of aniline and anisole are low-spin (probably doublet) states, while the mono-complexes of these same ligands are high-spin (sextet) states. The dimethyl aniline complex gave a cluttered spectrum in poor agreement with calculations, which may reflect a mixture of binding-site isomers in this case.  相似文献   
3.
The gas-phase infrared absorption spectra of neutral benzyl and tropyl, isomers of formula C7H7, have been measured in the 400-1800 cm-1 spectral region. In addition, a quantum chemical calculation has been performed to model the infrared spectra. For the benzyl radical, the theory shows satisfactory overlap with the experiment, although vibrations involving the CH2 group might be anharmonic. The tropyl radical, which is subject to the Jahn-Teller effect, seems well modeled for the out-of-plane vibrational modes, but less so for the in-plane vibrational modes.  相似文献   
4.
Several isomeric forms of the vinyl alcohol/water radical cation have been investigated by high-level ab initio molecular orbital theory calculations, including electron correlation effects. Of the ions considered here, the anti form of the ? O ?H ?O? bridged complex is calculated to be the lowest in energy, having a stabilization energy of 100 kJ mol?1 with respect to the dissociation products [CH2CHOH]+˙ and H2O. Although the isomeric ions may formally be represented as distonic ions, hydrogen-bridged ions and ion–dipole complexes, the only significant barrier separating the isomers appears to be the anti?syn isomerization barrier. However, in the ? O ?H ?O? bridged complex this barrier is found to be considerably lowered relative to the anti?syn isomerization barrier for the free vinyl alcohol radical cation.  相似文献   
5.
The organometallic ions V+-(benzene) and V+-(benzene)2 are produced by laser vaporization in a pulsed nozzle source. They are trapped and mass selected in an ion-trap/time-of-flight mass spectrometer, and their infrared spectra are measured with resonance-enhanced multiphoton photodissociation (IR-REMPD) spectroscopy with a tunable free-electron laser. Vibrational bands in the 600-1800 cm-1 region are characteristic of the benzene molecular moiety perturbed by the metal cation bonding. Experimental data are compared to the IR spectra derived from density functional calculations. Vibrational patterns in V+-(C6H6) indicate that the metal is bound in an eta6 pi-bonding configuration, while V+-(C6H6)2 is a sandwich. Trapped-ion IR-REMPD is a general method to access the vibrational spectroscopy of organometallic ions and their clusters.  相似文献   
6.
7.
8.
1‐Deoxysphingolipids are a recently described class of sphingolipids that have been shown to be associated with several disease states including diabetic and hereditary neuropathy. The identification and characterization of 1‐deoxysphingolipids and their metabolites is therefore highly important. However, exact structure determination requires a combination of sophisticated analytical techniques due to the presence of various isomers, such as ketone/alkenol isomers, carbon–carbon double‐bond (C=C) isomers and hydroxylation regioisomers. Here we demonstrate that cryogenic gas‐phase infrared (IR) spectroscopy of ionized 1‐deoxysphingolipids enables the identification and differentiation of isomers by their unique spectroscopic fingerprints. In particular, C=C bond positions and stereochemical configurations can be distinguished by specific interactions between the charged amine and the double bond. The results demonstrate the power of gas‐phase IR spectroscopy to overcome the challenge of isomer resolution in conventional mass spectrometry and pave the way for deeper analysis of the lipidome.  相似文献   
9.
Here we present a combined experimental and theoretical study on the secondary structure of isolated proteins as a function of charge state. In infrared spectra of the proteins ubiquitin and cytochrome c, amide I (C=O stretch) and amide II (N–H bend) bands can be found at positions that are typical for condensed‐phase proteins. For high charge states a new band appears, substantially red‐shifted from the amide II band observed at lower charge states. The observations are interpreted in terms of Coulomb‐driven transitions in secondary structures from mostly helical to extended C5‐type hydrogen‐bonded structures. Support for this interpretation comes from simple energy considerations as well as from quantum chemical calculations on model peptides. This transition in secondary structure is most likely universal for isolated proteins that occur in mass spectrometric experiments.  相似文献   
10.
Niobium and tantalum carbide clusters have been isolated in the gas phase and irradiated with intense tunable infrared (IR) light. Stable neutral clusters are selectively ionized and subsequently detected in a mass spectrometer. By tuning the IR frequency, infrared multiphoton absorption spectra are obtained for a whole range of clusters. These mass-selective IR spectra lead to insights into the structures of small niobium and tantalum carbide clusters and nanocrystals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号