首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
化学   10篇
数学   2篇
  2014年   3篇
  2011年   1篇
  2002年   1篇
  2000年   1篇
  1994年   1篇
  1991年   2篇
  1974年   2篇
  1970年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Applied Biochemistry and Biotechnology - Reporter strains of bacteria were tested using soil samples from several sites near a leaking fuel oil storage facility. The reporter bacteria utilized the...  相似文献   
2.
3.
Limit and shakedown analysis are effective methods for assessing the load carrying capacity of a given structure. The elasto–plastic behavior of the structure subjected to loads varying in a given load domain is characterized by the shakedown load factor, defined as the maximum factor which satisfies the sufficient conditions stated in the corresponding static shakedown theorem. The finite element dicretization of the problem may lead to very large convex optimization. For the effective solution a basis reduction method has been developed that makes use of the special problem structure for perfectly plastic material. The paper proposes a modified basis reduction method for direct application to the two-surface plasticity model of bounded kinematic hardening material. The considered numerical examples show an enlargement of the load carrying capacity due to bounded hardening.  相似文献   
4.
5.
In this paper, a mathematical programming formulation is presented for the structural optimization with respect to the shakedown analysis of 3-D perfectly plastic structures on basis of a finite element discretization. A new direct algorithm using plastic sensitivities is employed in solving this optimization formulation. The numerical procedure has been applied to carry out the shakedown analysis of pipe junctions under multi-loading systems. The new approach is compared to so-called derivative-free direct search methods. The computational effort of the proposed method is much lower compared to this methods.  相似文献   
6.
7.
The behavior of CO(2) and N(2), both as single components and as binary mixtures, in two cage-type silica zeolites was studied using atomistic simulations. The zeolites considered, ITQ-3 and paradigm cage-type zeolite ZK4 (the all-silica analog of LTA), were chosen so that the principles illustrated can be generalized to other adsorbent/adsorbate systems with similar topology and types of interactions. N(2) was chosen both because of the potential uses of N(2)/CO(2) separations and because it differs from CO(2) most significantly in the magnitude of its Coulombic interactions with zeolites. Despite similarities between N(2) and CO(2) diffusion in other materials, we show here that the diffusion of CO(2) within cage-type zeolites is dominated by an energy barrier to diffusion located at the entrance to the narrow channels connecting larger cages. This barrier originates in Coulombic interactions between zeolites and CO(2)'s quadrupole and results in well-defined orientations for the diffusing molecules. Furthermore, CO(2)'s favorable electrostatic interactions with the zeolite framework result in preferential binding in the windows between cages. N(2)'s behavior, in contrast, is more consistent with that of molecules previously studied. Our analysis suggests that CO(2)'s behavior might be common for adsorbates with quadrupoles that interact strongly with a material that has narrow windows between cages.  相似文献   
8.
9.
Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass‐producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra‐fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra‐fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo‐dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure–function relationships.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号