首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
力学   1篇
数学   1篇
  2014年   1篇
  2012年   2篇
  1996年   1篇
  1991年   1篇
  1981年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
In this work, we present the parametrization of Ca-O/H interactions within the reactive force field ReaxFF, and its application to study the hydration of calcium oxide surface. The force field has been fitted using density functional theory calculations on gas phase calcium-water clusters, calcium oxide bulk and surface properties, calcium hydroxide, bcc and fcc Ca, and proton transfer reactions in the presence of calcium. Then, the reactive force field has been used to study the hydration of the calcium oxide {001} surface with different water contents. Calcium oxide is used as a catalyzer in many applications such as CO(2) sequestration and biodiesel production, and the degree of surface hydroxylation is a key factor in its catalytic performance. The results show that the water dissociates very fast on CaO {001} bare surfaces without any defect or vacancy. The surface structure is maintained up to a certain amount of water, after which the surface undergoes a structural rearrangement, becoming a disordered calcium hydroxyl layer. This transformation is the most probable reason for the CaO catalytic activity decrease.  相似文献   
3.
Summary In the last decade, the development in computer architectures has strongly influenced and motivated the evolution of algorithms for large-scale scientific computing. The unifying theme of the parallel algorithm group in CERFACS is the exploitation of vector and parallel computers in the solution of large-scale problems arising in computational science and engineering. The choice of a portable approach often leads to a loss in the average performance per computer with respect to a machine dependent implementation of the code. However, we show that, in full linear algebra as well as in sparse linear algebra, efficiency and portability can be combined. To illustrate our approach, we discuss results obtained on a wide range of shared memory multiprocessors including the Alliant FX/80, the IBM 3090E/3VF, the IBM 3090J/6VF, the CRAY-2, and the CRAY Y-MP.  相似文献   
4.
We describe the design and implementation of a parallel QR decomposition algorithm for a large sparse matrix A . The algorithm is based on the multifrontal approach and makes use of Householder transformations. The tasks are distributed among processors according to an assembly tree which is built from the symbolic factorization of the matrix A T A . We first address uniprocessor issues and then discuss the multiprocessor implementation of the method. We consider the parallelization of both the factorization phase and the solve phase. We use relaxation of the sparsity structure of both the original matrix and the frontal matrices to improve the performance. We show that, in this case, the use of Level 3 BLAS can lead to very significant gains in performance. We use the eight processor Alliant˜FX/80 at CERFACS to illustrate our discussion.  相似文献   
5.
A miscibility and phase behavior study was conducted on poly(ethylene glycol) (PEG)/poly(l ‐lactide‐ε‐caprolactone) (PLA‐co‐CL) blends. A single glass transition evolution was determined by differential scanning calorimetry initially suggesting a miscible system; however, the unusual Tg bias and subsequent morphological study conducted by polarized light optical microscopy (PLOM) and atomic force microscopy (AFM) evidenced a phase separated system for the whole range of blend compositions. PEG spherulites were found in all blends except for the PEG/PLA‐co‐CL 20/80 composition, with no interference of the comonomer in the melting point of PEG (Tm = 64 °C) and only a small one in crystallinity fraction (Xc = 80% vs. 70%). However, a clear continuous decrease in PEG spherulites growth rate (G) with increasing PLA‐co‐CL content was determined in the blends isothermally crystallized at 37 °C, G being 37 µm/min for the neat PEG and 12 µm/min for the 20 wt % PLA‐co‐CL blend. The kinetics interference in crystal growth rate of PEG suggests a diluting effect of the PLA‐co‐CL in the blends; further, PLOM and AFM provided unequivocal evidence of the interfering effect of PLA‐co‐CL on PEG crystal morphology, demonstrating imperfect crystallization in blends with interfibrillar location of the diluting amorphous component. Significantly, AFM images provided also evidence of amorphous phase separation between PEG and PLA‐co‐CL. A true Tg vs. composition diagram is proposed on the basis of the AFM analysis for phase separated PEG/PLA‐co‐CL blends revealing the existence of a second PLA‐co‐CL rich phase. According to the partial miscibility established by AFM analysis, PEG and PLA‐co‐CL rich phases, depending on blend composition, contain respectively an amount of the minority component leading to a system presenting, for every composition, two Tg's that are different of those of pure components. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 111–121  相似文献   
6.
Interest in microporous materials has risen in recent years, as they offer a confined environment that is optimal to enhance chemical reactions. Calcium silicate hydrate (C-S-H) gel, the main component of cement, presents a layered structure with sub-nanometer-size disordered pores filled with water and cations. The size of the pores and the hydrophilicity of the environment make C-S-H gel an excellent system to study the possibility of confined water reactions. To investigate it, we have performed molecular dynamics simulations using the ReaxFF force field. The results show that water does dissociate to form hydroxyl groups. We have analyzed the water dissociation mechanism, as well as the changes in the structure and water affinity of the C-S-H matrix and water polarization, comparing the results with the behavior of water in a defective zeolite. Finally, we establish a relationship between water dissociation in C-S-H gel and the increase of hardness due to a transformation from a two- to a three-dimensional structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号