首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
化学   26篇
力学   3篇
物理学   8篇
  2012年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   7篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
The dynamics of the electric arc inside a direct current non-transferred arc plasma torch are simulated using a three-dimensional, transient, equilibrium model. The fluid and electromagnetic equations are solved numerically in a fully coupled approach by a multiscale finite element method. Simulations of a torch operating with argon and argon–hydrogen under different operating conditions are presented. The model is able to predict the operation of the torch in steady and takeover modes without any further assumption on the reattachment process except for the use of an artificially high electrical conductivity near the electrodes, needed because of the equilibrium assumption. The results obtained indicate that the reattachment process in these operating modes may be driven by the movement of the arc rather than by a breakdown-like process. It is also found that, for a torch operating in these modes and using straight gas injection, the arc will tend to re-attach to the opposite side of its original attachment. This phenomenon seems to be produced by a net angular momentum on the arc due to the imbalance between magnetic and fluid drag forces.  相似文献   
2.
In this paper, a comprehensive model for thermal plasma chemical vapor deposition (TPCVD) with liquid feedstock injection is documented. The gas flow is assumed to be steady, of a single temperature. Radiation and charged species contributions are excluded, but extensive homogeneous and heterogeneous chemistry is included. The liquid phase is traced by considering individual droplets. Discussion on the model's application to diamond production from acetone in a hydrogen–argon plasma is included. The major conclusions are: (1) Liquid injection possesses a capability to deliver the hydrocarbon precursor directly onto the deposition target. (2) For the case of complete evaporation of the droplet before reaching the substrate, the deposition rate is similar to that obtained with gaseous precursors. (3) The computational results compare well with experimental data. The modeling results can be used to optimize the injection parameters with regard to the deposition rate.  相似文献   
3.
Diamond crystals and films have been success full y synthesized by DC thermal plasma jet CVD at a pressure of I atrn. A novel triple torch plasma reactor has been used to generate a convergent plasma volume to entrain the participating gases. Three coalescing plasma jets produces! by this reactor direct the dissociated and ionized gaseous species onto ( 100) silicon wafer substrates where the diamond grows. In a typical 10-min run, depending on the method of .substrate preparation, either microcrystals with sizes up to 8 m or continuous films with thicknesses of 1–2 m have been obtained. X-ray diffraction, scanning electron microscopy, and Raman spectroscopy have been used for the characterization of the crystals and of the films.  相似文献   
4.
Enthalpy probe measurements were taken of the converging plasma plume in a triple torch plasma reactor and related to substrate heat flux measurements. Results show excellent entrainment of process gases injected into the converging plasma plume by way of the central injection probe. At lower pressures (40 kPa), the plasma volume is equivalent to at least a 3 cm diameter, 4 cm long cylinder, with relatively uniform temperature, velocity, and substrate heat flux profiles when compared to a typical dc arc jet. Converging plasma plume size, substrate heat flux, and enthalpy profiles are also shown to be a strong function of applied system power. Substrate heat flux measurements show smaller radial gradients than enthalpy probe measurements, because of the high radial velocity component of gases above the substrate boundary layer. Enthalpy probe measurements were also conducted for diamond deposition conditions and approximate temperature and velocity profiles obtained. Problems with the uniform gas mixture assumption prohibited more accurate measurements. Reproducibility of enthalpy measurement results was shown with an average standard deviation of 11.8% for the velocity and 7.6% for the temperature measurements.  相似文献   
5.
Effects of process parameters on diamond film synthesis in DC thermal plasma jet reactors are discussed including substrate material, methane concentration and substrate temperature. Diamond has been deposited on silicon, molybdenum, tungsten, tantalum, copper, nickel, titanium, and stainless steel. The adhesion of diamond film to the substrate is greatly affected by the type of substrate used. It has been found that the methane concentration strongly affects the grain size of the diamond films. Increased methane concentrations result in smaller grain sizes due to the increased number of secondary nucleations on the existing facets of diamond crystals. Substrate temperature has a strong effect on the morphology of diamond films. With increasing substrate temperature, the predominant orientation of the crystal growth planes changes from the (111) to the (100) planes. Studies of the variation of the film quality across the substrate due to the nonuniformity of thermal plasma jets indicate that microcrystalline graphite formation starts at the corners and edges of diamond crystals when the conditions become unfavorable for diamond deposition.  相似文献   
6.
A thermal plasma process for the synthesis of nanoparticles and their immediate assembly into nanostructured films is discussed. In this process, known as hypersonic plasma particle deposition, a thermal plasma with injected precursors is expanded through a nozzle to nucleate nanoparticles, which are then inertially deposited onto a cooled substrate in vacuum. A lightly consolidated nanostructured film results. Particle and film diagnostics along with images of the plasma flow are used to explain the formation of nanostructured silicon carbide films by this process  相似文献   
7.
The synthesis of silicon nanowires that are densely coated with silicon nanoparticles is reported. These structures were produced in a two-step process, using a method known as hypersonic plasma particle deposition. In the first step, a Ti–Si nanoparticle film was deposited. In the second step the Ti-source was switched off, and nanoparticle-coated nanowires grew under the simultaneous action of Si vapor deposition and bombardment by Si nanoparticles. Total process time, including both steps, equaled 5 min, and resulted in formation of a dense network of randomly oriented nanowires covering1.5 cm2 of substrate area. The nanowires are composed of single-crystal Si. The diameters of the nanowires vary over the range 100–800 nm. Each nanowire has a crystalline TiSi2 catalyst particle, believed to have been solid during nanowire growth, at its tip.  相似文献   
8.
The syntheses of the bis (styryl)benzenes 4 and 5 and of the aza analogue 3 are described. Diamine 3 and dialdehyde 5 were cyclized to the 14-membered macrocycles 19 and 27 , respectively. Diamine 4 and glyoxal give the 28-membered macrocycle 28 . The cyclizations are discussed.  相似文献   
9.
In this paper a dimensionless parameter is defined which allows the prediction of the thermodynamic state in the field-free plasma jet of D. C. operated plasma torches of various designs. This dimensionless parameterP is derived from the conservation equations applied to a two-step temperature and velocity model and contains only quantities which can be experimentally determined without using sophisticated equipment. Critical values ofP based on a critical electron density of 1016 cm?3 have been calculated for argon, hydrogen, nitrogen, oxygen, and helium and corresponding values of Pcrit have been determined experimentally for two different D. C. operated argon plasma torches using various diagnostic techniques. The experimental values corroborate the assumptions made for the calculation of Pcrit. ForP < Pcrit, substantial deviations from the local thermodynamic equilibrium (LTE) may occur.  相似文献   
10.
Wire-Arc Spray Modeling   总被引:5,自引:0,他引:5  
A model is presented describing the details of the wire-arc spray process. The model consists of several submodels each treating a different part of the process. A compressible flow model describes the supersonic nozzle flow upstream of the wire tips. The arc is described by a 3-D arc in cross-flow model using different boundary conditions for the cathode and the anode boundary. The resulting temperature and velocity contours serve as upstream boundary for a 2-D turbulent jet model. Particle generation and acceleration is described by treating the initial droplet formation for the anode and the cathode wire separately and then using the resulting particle size and velocity distributions in a secondary break-up model. Comparison with some experimental results show acceptable agreement. This modeling approach may be used for optimization of wire-arc spray equipment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号